首页|解释引导增强的多对对比学习序列推荐

解释引导增强的多对对比学习序列推荐

扫码查看
序列推荐中对比学习可有效地缓解数据稀疏性问题,但现有对比学习采用的随机增强方法产生的正样本表现出假阳性,单对对比学习不能很好地中和假阴性的负样本问题,导致推荐性能受限。针对上述问题,提出解释引导增强的多对对比学习序列推荐算法(EMC4Rec)。首先利用解释方法来确定用户序列中项目的重要性分数,再通过解释引导增强根据项目的重要性分数生成多个高质量的正样本并执行多对对比学习。在Beauty、Toys、ML-1M三个公共数据集上实验结果表明,EMC4Rec在命中率(HR)和归一化折损累计增益(NDCG)两个指标上相较于CL4SRec、CoSeRec分别提升 8。13%,11。38%。
Explanation Guidance of Augmentation Multi Pair Contrastive Learning Sequential Recommendation
Comparative learning in sequence recommendation can effectively alleviate the problem of data sparsity,but the existing random enhancement methods used in comparative learning produce positive samples that ex-hibit false positives.Single pair comparative learning cannot effectively neutralize the problem of false negatives in negative samples,resulting in limited recommendation performance.To address the above issues,an explanation guided enhanced multi pair contrastive learning sequence recommendation algorithm(EMC4Rec)is proposed.Firstly,the explanation method is used to determine the importance scores of the items in the user sequence,and then the Ex-planation Guidance Augmentation is used to generate multiple high-quality positive samples according to the impor-tance scores of the items and perform multi-pair contrastive learning.Experimental results on Beauty,Toys and ML-1 datasets show that EMC4Rec'stop-k Hit Ratio(HR)and Normalized Discounted Cumulative Gain(NDCG)are 8.13%and 11.38%higher than those of CL4SRec and CoSeRec respectively.

Sequential recommendationContrastive learningExplanation methodSlidewindow

杨兴耀、钟志强、于炯、李梓杨

展开 >

新疆大学软件学院,新疆 乌鲁木齐 830008

序列推荐 对比学习 解释方法 滑动窗口

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)