首页|基于宽度回声状态网络的PCCP断丝智能预测

基于宽度回声状态网络的PCCP断丝智能预测

扫码查看
预应力钢筒混凝土管PCCP在长距离供水、市政管道等工程中应用广泛,但逐渐累积的断丝会威胁管道安全。为提前防范PCCP断丝事故,针对PCCP断丝的提前预测问题提出基于智能技术的预测方法。首先,对PCCP断丝数据进行统计分析,总结断丝数据规律;其次,提出基于宽度回声状态网络的PCCP断丝预测方法;最后,对断丝数据进行预测实验,结果表明该网络结构相对经典深度学习网络可以提高预测精度,实现对复杂时间序列数据的可靠预测。所提方法有助于提前感知断丝趋势,进而为PCCP管道预防式检修及风险预警提供重要参考信息。
Intelligent Prediction for PCCP Wire Breakage Based on Broad Echo State Network
Pre stressed steel cylinder concrete pipe(PCCP)is widely used in long-distance water supply,munici-pal pipelines,and other engineering projects,but the accumulation of broken wires can threaten pipeline safety.To prevent the wire breakage accident of PCCP in advance,a prediction method based on intelligent technology was pro-posed for PCCP wire breakage.Firstly,the PCCP wire breaking data was statistically analyzed and the law of wire breaking data was summarized.Secondly,a prediction method based on broad echo state network was proposed.Final-ly,the prediction experiment was carried out,and the results show that the proposed network can improve the predic-tion accuracy compared with the classical deep learning network,and realize the reliable prediction of complex time series data.The proposed method can help perceive the tendency of wire breakage in advance and provide important reference information for preventive maintenance and risk warning of PCCP.

PCCP wire breakageTime series predictionBroad learningState echo network

张海鹏、王建慧、邵青、张立

展开 >

北京市南水北调干线管理处,北京,100097

北京市水科学技术研究院,北京,100048

预应力钢筒混凝土管断丝 时序预测 宽度学习 回声状态网络

2024

计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
年,卷(期):2024.41(11)