计算机仿真2024,Vol.41Issue(11) :555-559.

面向低空立体覆盖场景的三维指纹定位

3D Fingerprint-Based Localization for Low Altitude Stereo Coverage Scenarios

刘飞扬 刘蕊
计算机仿真2024,Vol.41Issue(11) :555-559.

面向低空立体覆盖场景的三维指纹定位

3D Fingerprint-Based Localization for Low Altitude Stereo Coverage Scenarios

刘飞扬 1刘蕊2
扫码查看

作者信息

  • 1. 中国电子科技集团公司第五十四研究所,河北 石家庄 050081
  • 2. 东南大学,江苏 南京 210044
  • 折叠

摘要

在广域低空立体覆盖场景中,传统基于搜索的指纹匹配算法所需开销巨大.因此,提出了一种基于卷积神经网络的三维(three-dimensional,3D)指纹定位方法.首先,在无蜂窝大规模多输入多输出(multiple-input multiple-output,MIMO)系统中,提出了包含丰富散射信息的角度-空间域信道功率矩阵作为指纹.然后,采用改进的Z-Score方法标准化处理指纹,在不改变特征分布的前提下统一数据量级.最后,设计卷积神经网络学习指纹-位置的映射关系以实现位置估计.仿真验证了所提方法能够以低开销实现高精度的定位.

Abstract

Traditional search-based fingerprint matching algorithms require huge overheads in wide-area low-al-titude stereo coverage scenarios.Therefore,a three-dimensional(3D)fingerprint localization method based on a conv-olutional neural network is proposed.First,the angle-space domain channel power matrix containing rich scattering information is proposed as a fingerprint for cell-free massive multiple-input multiple-output(MIMO)systems.Then,an improved Z-Score approach is employed to normalize the fingerprint which unifies the data magnitude without changing the feature distribution.Finally,a convolutional neural network is designed to learn the fingerprint-position mapping relationship for position estimation.The simulations verify that the proposed method can achieve high-preci-sion localization with low overhead.

关键词

无蜂窝大规模多输入多输出/三维定位/卷积神经网络

Key words

Cell-free massive MIMO/3D localization/Convolutional neural network

引用本文复制引用

出版年

2024
计算机仿真
中国航天科工集团公司第十七研究所

计算机仿真

CSTPCD
影响因子:0.518
ISSN:1006-9348
段落导航相关论文