首页|复杂道路环境下的车辆牌照检测与识别

复杂道路环境下的车辆牌照检测与识别

扫码查看
针对复杂道路环境中车牌因倾斜、模糊、遮挡导致图像定位检测效果不佳和识别精度低等问题,提出一种基于全局阈值的灰度二值化图像预处理方法,采用YoloV51算法对后处理阶段的数据集进行定位检测和检测结果评估,并通过R-CNN模型识别定位检测后的车牌图像字符.结果表明:当训练过程持续到100轮次时,相比于Faster R-CNN算法,该模型检测的平均精度均值(mAP)提升9.2%,识别准确率提升17.33%,验证该方法检测和识别车牌的有效性与优越性.
Vehicle license plate detection and recognition in complex road environments
A gray binarization image preprocessing method based on a global threshold is proposed to aim at the issues of poor positioning detection effect and low recognition accuracy caused by tilt,blurring and occlusion of license plates in complex road.YoloV51 algorithm is adopted to conduct positioning detection and evaluate detection results on data sets in the post-processing stage.R-CNN model is used to recognize the license plate image characters after location detection.The results show that when the training process continues to 100 rounds,compared with the Faster R-CNN algorithm,the mean average precision(mAP)of the model detection is improved by 9.2%,and the recognition accuracy is improved by 17.33%,which verifies the effectiveness and superiority of this method in detecting and recognizing license plates.

gray binarizationimage denoisingdeep learningYoloV51license plate locationR-CNNcharacter recognitionobject detection

万雨昊

展开 >

上海大学通信与信息工程学院,上海 200444

灰度二值化 图像去噪 深度学习 YoloV51 车牌定位 R-CNN 字符识别 目标检测

2024

计算机辅助工程
上海海事大学

计算机辅助工程

影响因子:0.388
ISSN:1006-0871
年,卷(期):2024.33(2)