首页|基于深度学习的结构位移场预测方法

基于深度学习的结构位移场预测方法

扫码查看
基于有限元法基本方程,将特征拓展层嵌入深度学习模型,依托Abaqus软件接口编写训练集生成器,实现单个模型预测结构全位移分量.采用Tensorflow框架下的Keras API训练空间薄壳结构的深度学习模型,对预测效果进行定量分析,结果表明:深度学习模型的计算效率较仿真模型显著提高,位移的最大值和分布规律预测与仿真结果基本一致,但在位移0值边界处存在误差增大的现象.
Structural displacement field prediction method based on deep learning
Based on the basic equations of finite element method,the feature extension layer is embedded into the deep learning model,and a training set generator is developed using Abaqus software interface to achieve single model prediction of the full displacement component of the structure.Using the Keras API under the TensorFlow framework to train a deep learning model for spatial thin shell structures,a quantitative analysis of the prediction performance is conducted.The results show that:the computational efficiency of the deep learning model is significantly improved compared to the simulation model,and the prediction of the maximum displacement and distribution pattern is basically consistent with the simulation results,however there is an increase in error at the 0 displacement boundary.

deep learningmodel trainingdisplacement fieldpredictionspatial thin shell structure

胡烨之、张雅琪、卢昌红

展开 >

上海慧广科技发展有限公司,上海 200030

锦天城(合肥)律师事务所,合肥 230001

合肥瀚网软件科技有限公司,合肥 23008

深度学习 模型训练 位移场 预测 空间薄壳结构

2024

计算机辅助工程
上海海事大学

计算机辅助工程

影响因子:0.388
ISSN:1006-0871
年,卷(期):2024.33(4)