首页|针对密集点云的快速曲面重建算法

针对密集点云的快速曲面重建算法

扫码查看
为了能够快速地从高密度散乱点云生成三角形网格曲面,提出一种针对散乱点云的曲面重建算法.首先通过逐层外扩建立原始点云的近似网格曲面,然后对近似网格曲面进行二次剖分生成最终的精确曲面;为了能够处理噪声点云,在剖分过程中所有网格曲面顶点都通过层次B样条进行了优化.相比于其他曲面重建方法,该算法剖分速度快,且能够保证点云到所生成的三角网格曲面的距离小于预先设定容限.实验结果表明,文中算法能够有效地实现高密度散乱点云的三角剖分,且其剖分速度较已有算法有大幅提高.
Rapid Surface Reconstruction Algorithm from Dense Point Cloud
In order to triangulate a dense scattered point cloud efficiently, a novel surface reconstruction method is proposed. The algorithm presented consists of two steps: Firstly, an initial triangle mesh is constructed by repeating a simple advancing front rule. Then, initial triangles are subdivided to obtain the final accurate surface and triangle vertexes are refined by means of Multilevel B-spline fitting. Compared with other popular methods, the subdivide speed is a significant advantage of the algorithm. Besides, the algorithm guarantees that the distance from original points to the result mesh is within a predefined tolerance. Several experiments based on real scan data are used to evaluate the efficiency of this algorithm and the speed advantage is demonstrated by the comparison with other popular algorithms.

scattered point cloudsurface reconstructiontriangulationadvancing front

聂建辉、马孜、胡英、陈新禹

展开 >

大连海事大学自动化研究中心 大连 116026

散乱点云 曲面重建 三角化 外扩

国家科技重大专项基金

2009ZX04001-021

2012

计算机辅助设计与图形学学报
中国计算机学会

计算机辅助设计与图形学学报

CSTPCDCSCD北大核心EI
影响因子:0.892
ISSN:1003-9775
年,卷(期):2012.24(5)
  • 12
  • 2