首页|子图匹配和强化学习增强的三维点云配准

子图匹配和强化学习增强的三维点云配准

扫码查看
针对低质量三维点云数据配准精度不足、效率低的问题,为了实现低质量点云的精确、快速配准,提出一种基于子图匹配和强化学习的点云配准方法.首先将三维点云配准转化为一系列离散的刚性变换连续作用结果,利用强化学习策略训练一个端到端的模型以迭代输出刚性变换动作;然后对于模型架构,采用双流主干网络分别提取源点云与目标点云的局部特征信息,设计交叉图注意力模块将源点云图和目标点云图中的相似节点关联起来,使用带选通向量的加权实现图节点的聚合,分别获取源点云图与目标点云图的全局特征表示;最后融合源点云图与目标点云图的全局特征,基于融合特征预测离散的刚性变换动作.强化学习策略的引入显著提高了点云配准算法的泛化性,在加入交叉图注意力模块后,点云配准的精度及效率也进一步被提升.在 ModelNet40 和 ScanObjectNN 这 2 个公共基准数据集上与最新的点云配准方法 ReAgent 进行实验的结果表明,所提方法能够将旋转误差的均方差数值降低至少 0.16,各向同性旋转误差数值也降低至少 0.16,有效地提升低质量点云配准的精度.
3D Point Cloud Registration Enhanced by Subgraph Matching and Reinforcement Learning
Aiming at the insufficient accuracy and the low efficiency of 3D point cloud registration,a point cloud registration method based on subgraph matching and reinforcement learning was proposed to achieve the accurate and fast registration of low-quality point cloud.Firstly,the 3D point cloud registration can result from a series of discrete rigid transformation actions,and this work used a reinforcement learning strategy to train an end-to-end model to iteratively predict the rigid transformation actions.Then,for the model architecture,a Siamese backbone was used to extract the local feature information of the source point cloud and the target point cloud,respectively.Similar nodes in the source graph and the target graph were associated through a proposed cross-graph attention module.The aggregation of graph nodes was designed to extract global features of two graphs,by using the weighted sum with gating vectors.Finally,the global features of the source graph and the target graph were fused,and the discrete rigid transformation action was predicted based on the fused feature.The reinforcement learning strategy significantly improves the generalization of point cloud registra-tion.The cross-graph attention module further improves the accuracy and efficiency of point cloud registration.Extensive experiments on both synthetic and real-scanned datasets,ModelNet40 and ScanObjectNN,demon-strate that,compared with the latest point cloud registration method,ReAgent,the proposed method can reduce the mean average error of rotation by at least 0.16 and the isotropic rotation error by at least 0.16,effectively improving the accuracy of registration on low-quality point clouds.

point cloud registrationreinforcement learninggraph neural networksubgraph matchingcross-graph attention mechanism

张义、董华、吴巧云、易程、汪俊

展开 >

中建三局第一建设工程有限责任公司 武汉 430040

安徽大学人工智能学院 合肥 230601

南京航空航天大学机电学院 南京 210016

点云配准 强化学习 图神经网络 子图匹配 交叉图注意力机制

国家自然科学基金重大研究计划江苏省科技计划

92160301BE2021057

2024

计算机辅助设计与图形学学报
中国计算机学会

计算机辅助设计与图形学学报

CSTPCD北大核心
影响因子:0.892
ISSN:1003-9775
年,卷(期):2024.36(1)
  • 35