首页|融合注意力机制与联合优化的表面缺陷检测

融合注意力机制与联合优化的表面缺陷检测

扫码查看
两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能。针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法。首先基于混合注意力特征融合模块的分割网络融合浅层特征和深层特征,提取更全面的缺陷位置信息;然后基于多感受野空间注意力模块的分类网络挖掘更具判别性的缺陷类别特征;最后通过联合优化目标实现分割和分类网络的学习优化,提升整个算法的耦合性以及性能。基于PyTorch框架,在公开工业缺陷检测数据集DAGM 2007,MAGNETIC-TILE和KolektorSDD2 数据集上进行实验,并引入分段式算法及类 U-Net 算法进行横向对比的结果表明,所提算法的准确率相比分段式算法最高提升 28。02%,相比类U-Net算法最高提升 8。3%,且精确率、召回率、F1 值均优于同类算法,具有更好的检测性能。
Attention Mechanism Based Joint Optimization Algorithm for Defect Detection
The objectives of segmentation network and classification network in two-step defect detection model are inconsistent,resulting in the low coupling between them,and the error accumulated in segmentation network further weakens the classification network performance.To address these problems,a joint optimi-zation model for defect detection is proposed,named MADD-Net,which can simultaneously predict both the location and category of defects based on the attention mechanism.Firstly,the segmentation network fuses the shallow and deep features to extract more information based on the mixed attention feature fusion mod-ule.Then,the classification network captures more discriminative features based on the multi-receptive-field spatial attention module.Finally,the segmentation and classification networks are trained simultaneously via the joint optimization objective.Extensive experiments are conducted on various public industrial defect detection datasets(DAGM 2007,MAGNETIC-TILE,and KolektorSDD2)based on PyTorch framework,and the proposed method achieves superior performance.The accuracy of this algorithm is up to 28.02%higher than that of piece-wise algorithm and 8.3%higher than that of U-Net-like algorithm.The precision,recall and F1-score are also better than other state-of-the-art models,which has better detection performance.

deep learningfeature fusiondefect detectionattention mechanism

董永峰、孙松毅、王振、刘晶

展开 >

河北工业大学人工智能与数据科学学院 天津 300401

河北工业大学河北省数据驱动工业智能工程研究中心 天津 300401

河北工业大学河北省大数据计算重点实验室 天津 300401

深度学习 特征融合 缺陷检测 注意力机制

国家重点研发计划国家自然科学基金北航北斗技术成果转化及产业化资金项目

2019YFC190460161902106BARI2001

2024

计算机辅助设计与图形学学报
中国计算机学会

计算机辅助设计与图形学学报

CSTPCD北大核心
影响因子:0.892
ISSN:1003-9775
年,卷(期):2024.36(1)
  • 30