首页|深度指导的无监督领域自适应语义分割

深度指导的无监督领域自适应语义分割

扫码查看
为了提高语义分割精度,解决模型在不同数据域上泛化性差的问题,提出基于深度信息的无监督领域自适应语义分割方法。首先,深度感知自适应框架通过捕捉深度信息和语义信息的内在联系,减小不同域之间的差异;然后,设计了一个轻量级深度估计网络来提供深度信息,通过跨任务交互策略融合深度和语义信息,并在深度感知空间对齐源域和目标域的分布差距;最后,提出基于深度信息的域内自适应策略弥合目标域内部的分布差异,将目标域分为子源域和子目标域,并缩小子源域和子目标域分布差距。实验结果表明,所提方法在 SYNTHIA-2-Cityscapes和SYNTHIA-2-Mapillary跨域任务上的平均交并比分别为 46。7%和 73。3%,与同类方法相比,该方法在语义分割和深度估计精度上均有显著提升。
Depth Guidance Unsupervised Domain Adaptation for Semantic Segmentation
To improve the segmentation performance and solve the problem of poor generalization of the model in different data domains,we propose a method based on depth information for semantic segmenta-tion in the context of unsupervised domain adaptation.It includes a Depth-aware Adaptation Frame-work(DAF)and a Intra-domain Adaptation(IDA)strategy.Firstly,DAF is proposed to adapt domains by capitalizing on the inherent correlations of semantic and depth information.Then a novel light-weight depth estimation network is designed provide additional depth information,and we fuse semantic and depth information by cross-task interaction,then align the distribution in depth-aware space between source and target domains.Finally,IDA strategy is proposed to bridge the distribution gap inside the target domain.To this end,a depth-aware ranking strategy is presented to separate target domain into sub-source domain and sub-target domain,and then we perform the alignment between sub-source domain and sub-target domain.Experiments on SYNTHIA-2-Cityscapes and SYNTHIA-2-Mapillary cross-domain tasks show that our method achieves significant improvement(46.7%mIoU and 73.3%mIoU,respec-tively)compared with the similar methods.

unsupervised domain adaptationsemantic segmentationmulti-task learningdepth estimation

卢加文、史金龙、诸皓伟、孙蕴瀚、成志刚

展开 >

江苏科技大学计算机学院 镇江 212000

南京大学计算机软件新技术国家重点实验室 南京 210046

浙江大学软件学院 杭州 310058

无监督领域自适应 语义分割 多任务学习 深度估计

国家重点研发计划中国民航大学民航智慧机场理论与系统重点实验室开放基金

2018YFC0309104SATS202207

2024

计算机辅助设计与图形学学报
中国计算机学会

计算机辅助设计与图形学学报

CSTPCD北大核心
影响因子:0.892
ISSN:1003-9775
年,卷(期):2024.36(1)
  • 29