首页|联合注意力和条件GAN的被遮挡人体姿态和体形估计方法

联合注意力和条件GAN的被遮挡人体姿态和体形估计方法

扫码查看
基于图像的人体姿态和体形估计常常因人体被遮挡而充满挑战。为此,提出一种基于单幅图像的姿态和体形估计方法。首先提出多尺度的注意力模块策略,输出具有丰富上下文信息的多尺度注意力特征,以有效地获得不受遮挡影响的全局的姿态和体形分布;然后提出基于热图的条件生成对抗网络策略,将由关节热图得到的姿态估计作为约束,实现网格精细调整;最后借助这 2 个策略得到的姿态和体形估计方法实现全局预测和局部细节求精的结合。在Ubuntu环境下,在 3DPW,3DOH50K和Human3。6M公开数据集上的实验结果表明,与SMPLify,GraphCMR和SPIN等方法相比,所提方法在身体部分被遮挡时重建效果更好,并在ACK,AVE和PA-MPJPE等定量评价指标上取得了更好的结果。
Pose and Shape Estimation of Occluded Humans with Attention and Conditional GAN
The occlusions of body parts often appear in the images,which makes the human pose and shape estimation from single images difficult.This paper proposes a single-image oriented framework to tackle this problem,where two effective tactics are proposed.One is a multi-scale attention module which generates the enhanced multi-scale attention features with rich contextual information,so that efficient global pose and shape distribution can be obtained without the affection of occlusion.The other is heatmap based conditional generative adversarial networks(GAN)which utilize the poses from the joint heatmaps as constraints and thus can refine the mesh of the occluded subject accurately.Combining these two tactics can make the pro-posed human pose and shape estimation method robustly recover the body meshes with both global predic-tion and local details.Qualitative and quantitative experiments with the training based on public datasets show the efficiency of the proposed method for occluded humans.

human pose and shape estimationsingle imagemulti-scale attentiongenerative adversarial net-works

朱妍、汪楷、汪粼波、方贤勇

展开 >

安徽大学体育军事教学部 合肥 230601

安徽大学计算机科学与技术学院 合肥 230601

人体体形和姿态估计 单幅图像 多尺度注意力 生成对抗网络

安徽省自然科学基金安徽省教育厅自然科学研究项目

2108085MF210KJ2021A0042

2024

计算机辅助设计与图形学学报
中国计算机学会

计算机辅助设计与图形学学报

CSTPCD北大核心
影响因子:0.892
ISSN:1003-9775
年,卷(期):2024.36(1)
  • 41