首页|监控场景下基于单帧与视频数据的行人属性识别方法综述及展望

监控场景下基于单帧与视频数据的行人属性识别方法综述及展望

扫码查看
行人属性识别旨在判断目标行人的预定义属性标签,从而生成关于该行人的结构化描述,包括年龄、性别、衣着、配饰等多种层次的语义信息。由于行人属性识别在视频监控领域具有极大的应用潜力,该任务广受研究者关注。随着深度学习的快速发展,研究者提出众多识别行人属性的方法,以获得更为精准的识别结果。针对当前复杂场景下,该任务面临的监控画面不清晰、行人状态变化、遮挡等问题,对监控场景下基于单帧与视频数据的行人属性识别方法进行综述,首先围绕行人属性识别这一任务,介绍其研究背景及任务概念,指出当前研究所面临的问题与挑战;其次根据"单帧图像"和基于视频数据的"序列图像"2种不同的样本类型,对行人属性识别方法进行分类,并依据属性识别过程中所采用的技巧和思路,归纳总结最新提出的行人属性识别方法,概述研究现状;再对当前主流使用的数据集进行分析比较,总结其特点;最后,从状态引导行人属性识别、立体属性、多任务融合、新数据集构建4个方面,思考该领域的未来发展方向并作出展望。
Pedestrian Attribute Recognition in Surveillance Scenario:A Survey and Future Perspectives on Frame vs.Video Based Methods
Pedestrian attribute recognition aims to predict the predefined attributes of a target pedestrian,gen-erating a structured description of the pedestrian,which includes semantic information like age,gender,cloth-ing,accessories and other levels of semantic information.Due to its wide application in the field of video sur-veillance and security,pedestrian attribute recognition has been widely concerned by researchers.With the rapid development of deep learning,researchers have proposed many methods to recognize pedestrian attrib-utes in order to obtain more accurate results.In view of the challenges faced by this task in complex scenes,such as unclear surveillance scenes,pedestrian status change,occlusion,etc.,this paper reviews frame-based and video-based pedestrian attribute recognition methods in surveillance scenario.First,the research back-ground and the concept of pedestrian attribute recognition are introduced,and the problems and challenges faced by the current research are pointed out.The pedestrian attribute recognition methods are classified ac-cording to two different sample types of"single frame"and"sequential frames captured from video".The newly proposed methods are summarized on the basis of techniques and ideas adopted in the attribute recogni-tion process.Then the current commonly employed datasets and experimental results are analyzed.Finally,from the four aspects of state-guided pedestrian attribute recognition,tri-dimensional attribute,multi-task fusion and new data set construction,the future direction of this field is prospected.

deep learningintelligent visual surveillancemulti-label classificationpedestrian attribute recogni-tiondatasets analysis

曹雨然、逯伟卿、于金佐、周亦博、胡海苗

展开 >

北京航空航天大学虚拟现实技术与系统国家重点实验室 北京 100191

北京航空航天大学杭州创新研究院 杭州 310052

深度学习 智能视频监控 多标签分类 行人属性识别 数据集分析

国家自然科学基金国家自然科学基金浙江省"尖兵"研发攻关计划

62122011U21A205142023C01030

2024

计算机辅助设计与图形学学报
中国计算机学会

计算机辅助设计与图形学学报

CSTPCD北大核心
影响因子:0.892
ISSN:1003-9775
年,卷(期):2024.36(3)
  • 43