首页|基于再聚类和离散优化的k路划分算法

基于再聚类和离散优化的k路划分算法

扫码查看
为了寻得集成电路更优的k路划分,提出将再聚类和离散优化应用于k路划分算法。首先利用再聚类缩小超图规模,即根据给定划分计算顶点间的评级函数值,依据取值大小进行顶点聚类;然后将超图转换为星型图,并将k路划分问题转换为无约束的离散优化问题;进而设计一个算法迭代移动增益值最大的顶点,在算法求解过程中放宽平衡约束,允许暂时处于不可行域的解,扩大问题的求解空间。在同一平台上使用ISPD98电路测试基准对所提算法、hMETIS-Kway和KaHyPar-K进行测试,并比较最小割值和运行时间。实验结果表明该算法优于hMETIS-Kway,特别是在k=2时,最小割值减少了 0。173,速度提升了 0。706。此外,该算法对KaHyPar-K也有相应的改进效果。
k-Way Partitioning Algorithm Based on Re-Clustering and Discrete Optimization
To achieve a better partitioning of VLSI circuit,re-clustering and discrete optimization are applied to the k-way partitioning algorithm.Firstly,re-clustering is used to reduce the scale of hypergraph,i.e.,the rating function value between two vertices is calculated according to the given partitionings,and vertices are clus-tered according to the magnitude of the rating function values.Secondly,the hypergraph is converted to a star graph,and the k-way partitioning problem is transformed to an unconstrained discrete optimization problem.In turn,an algorithm is designed to iteratively move the vertices with the largest gain.During the solution proc-ess,the balancing constraints are relaxed,allowing a solution to be temporarily in the infeasible region,which expands the solution space of the problem.The proposed algorithm,hMETIS-Kway and KaHyPar-K are tested on the same platform on the ISPD98 test benchmarks,and the min-cut and running time are compared.Ex-perimental results show that,the proposed algorithm is superior to hMETIS-Kway,especially when k=2,for which the min-cut is reduced by 0.173 and the runtime is sped up by 0.706.The proposed algorithm has almost the same improvement effect over KaHyPar-K.

k-way partitioningmin-cuthypergraph clusteringdiscrete optimization

潘萍梅、刘欣恬、李兴权、朱文兴

展开 >

福州大学离散数学与理论计算机科学研究中心 福州 350116

福州大学数学与统计学院 福州 350116

鹏城实验室 深圳 518073

闽南师范大学数学与统计学院 漳州 363000

展开 >

k路划分 最小割 超图聚类 离散优化

国家自然科学基金国家重点研发计划中央引导地方科技发展专项

621740332023YFA10113022023L3003

2024

计算机辅助设计与图形学学报
中国计算机学会

计算机辅助设计与图形学学报

CSTPCD北大核心
影响因子:0.892
ISSN:1003-9775
年,卷(期):2024.36(3)
  • 27