首页|大规模场景运动恢复结构研究综述

大规模场景运动恢复结构研究综述

扫码查看
运动恢复结构旨在基于图像间的局部特征匹配解算相机在全局统一坐标系下的绝对位姿,是基于图像的三维重建中的关键问题。近年来,随着采集设备、计算资源以及理论方法的发展,运动恢复结构研究已逐渐由实验室小规模可控场景向室内外大规模实际场景扩展,并取得了成果显著的理论方法与实际应用。文中从实际应用出发,综述了面向大规模场景三维重建的运动恢复结构研究领域的最新成果;专注于运动恢复结构中相机位姿解算核心问题,并全面介绍了其中的最新成果按照解析式与学习式方法进行;在此基础上,为助力社区发展,讨论与分析的运动恢复结构当前研究进展与未来发展态势。
Large-Scale Structure from Motion:A Survey
Structure from motion(SfM)aims to compute the absolute camera poses in a global unified coor-dinate system based on local feature matches between image pairs,which is a key problem in image-based 3D reconstruction.In recent years,with the development of acquisition devices,computational resources,and theoretical methods,research on SfM has gradually expanded from small-scale controlled laboratory settings to large-scale real-world indoor and outdoor environments,by which significant progress in both theoretical methods and practical applications has been achieved.Starting from the perspective of practical ap-plication,this survey focuses on the latest advances in large-scale 3D scene reconstruction-oriented SfM re-search,and compared with existing surveys in the related field,it specifically concentrates on the core problem of camera pose estimation in SfM and provides a comprehensive overview of the latest developments on both analytical and learning-based approaches.On this basis,to facilitate community development,the current pro-gress and future trend in SfM research are also discussed and analyzed by this survey.

structure from motionlarge-scale 3D scene reconstructionanalytical SfM methodslearning-based SfM methods

高翔、李梦晗、申抒含

展开 >

中国科学院自动化研究所中国科学院工业视觉智能装备技术工程实验室 北京 100190

中国海洋大学工程学院 青岛 266100

中国科学院大学人工智能学院 北京 100049

运动恢复结构 大规模场景三维重建 解析式SfM方法 学习式SfM方法

国家自然科学基金国家自然科学基金

62373349U22B2055

2024

计算机辅助设计与图形学学报
中国计算机学会

计算机辅助设计与图形学学报

CSTPCD北大核心
影响因子:0.892
ISSN:1003-9775
年,卷(期):2024.36(7)
  • 4