首页|联合注意力机制和多尺度特征的图像语义分割网络

联合注意力机制和多尺度特征的图像语义分割网络

扫码查看
针对卷积神经网络在图像语义分割时存在部分语义信息丢失、边界定位精度较低等问题,提出联合注意力机制和多尺度特征的卷积神经网络。首先基于注意力机制将网络提取到的多尺度特征进行加权融合,然后采用扩张卷积和全局平均池化聚合多尺度目标信息,最后采用边界精细粒度特征提取模块对分割边界进行优化。在多尺度PASCAL VOC2012和高分辨率Cityscapes数据集上的实验结果表明,所提网络的分割效果显著优于骨干网络ResNet-101,平均交并比分别提高12。2个百分点和9。3个百分点。
Research on Semantic Image Segmentation Network Combining Attention Mechanism and Multi-Scale Features
To address the problems of partial semantic information loss and low accuracy of boundary local-ization when convolutional neural networks are used for image semantic segmentation,this paper constructs a convolutional neural network by combining the attention mechanism and multi-scale features.The model firstly combines the multi-scale features extracted by the network based on the attention mechanism for weighting,then uses dilated convolution and global average pooling to aggregate the multi-scale target in-formation,and finally uses the boundary fine-grained feature extraction module to optimize the segmentation boundary.Experimental results on the multi-scale PASCAL VOC2012 and high-resolution Cityscapes data-sets show that the segmentation effect of the network in this paper is significantly better than that of the backbone ResNet-101,and the average cross-merge ratio is improved by 12.2 percentage points and 9.3 percentage points,respectively.

semantic segmentationattention mechanismmulti-scale featuresconvolutional neural network

张蕊、刘孟轩、孟晓曼、武益超

展开 >

华北水利水电大学信息工程学院 郑州 450046

中国联合网络通信有限公司郑州市分公司 郑州 450052

语义分割 注意力机制 多尺度特征 卷积神经网络

2024

计算机辅助设计与图形学学报
中国计算机学会

计算机辅助设计与图形学学报

CSTPCD北大核心
影响因子:0.892
ISSN:1003-9775
年,卷(期):2024.36(10)