首页|基于多视图融合跨层对比学习的推荐算法

基于多视图融合跨层对比学习的推荐算法

扫码查看
现有基于图对比学习的推荐模型在图数据增强方面通常只采用一种视图增强方法,忽略了单一方法存在的局限性,在对比学习方面通常只对比同一节点的一对视图,未充分利用各个视图不同的层嵌入。为此,提出一种基于多视图融合跨层对比学习的推荐算法框架(MFCCL)。MFCCL分别使用随机边丢弃和随机添加噪声的增强方法构建2个全局视图,使用奇异值分解的方法构建局部视图,通过3种不同的视图增强方法构造全局和局部共3个视图,以实现有效的用户表示。同时,提出一种新的多视图融合跨层对比学习方法,该方法将2个全局视图不同的层嵌入通过平行和交叉2种方式进行融合后作对比,以获取更多的特征信息。将多视图融合跨层对比学习与全局-局部视图对比学习相结合,联合优化模型,从而提升推荐性能。在Yelp、Tmall和Amazon-book这3个公开数据集上进行实验,结果表明,MFCCL在推荐任务中具有有效性和可行性,相较于对比模型中性能最优的基线模型SimGCL,MFCCL在 3 个数据集中的Recall@20 增益分别达到 15。0%、13。3%和 28。7%,NDCG@20 值分别提升14。3%、13。2%和29。6%。
Recommendation Algorithm Based on Multi-view Fusion Cross-layer Contrastive Learning
Existing recommendation models based on graph comparison learning usually use only one view enhancement method in graph data enhancement,ignoring the limitations of a single method.In contrastive learning,only a pair of views from the same node are usually compared,which do not fully utilize the different layer embeddings of each view.To this end,this study proposes a recommendation algorithm framework based on Multi-view Fusion Cross-layer Contrastive Learning(MFCCL).MFCCL constructs two global views using random edge drop and random noise addition enhancement methods,local views using Singular Value Decomposition(SVD),and three global and local views using three different view enhancement methods to achieve effective user representation.Simultaneously,a new MFCCL method is proposed,which embeds different layers of two global views through parallel and cross fusion methods for comparison,to obtain more feature information.Combining MFCCL with global-local view contrastive learning aims to jointly optimize the model and improve recommendation performance.Experiments are conducted on three publicly available datasets:Yelp,Tmall,and Amazon-book,and the results demonstrate that MFCCL is effective and feasible in recommendation tasks.Compared to the baseline model SimGCL,which had the best neutral performance in the comparative model,MFCCL exhibited better performance in the three datasets.The Recall@20 gains reached 15.0%,13.3%,and 28.7%,and the NDCG@20 values increased by 14.3%,13.2%,and 29.6%,respectively.

Graph Neural Network(GNN)contrastive learningview enhancementmulti-view fusionrecommen-dation algorithm

顾嘉静、杨丹、聂铁铮、寇月

展开 >

辽宁科技大学计算机与软件工程学院,辽宁 鞍山 114051

东北大学计算机科学与工程学院,辽宁 沈阳 110169

图神经网络 对比学习 视图增强 多视图融合 推荐算法

国家自然科学基金国家自然科学基金辽宁省教育厅科学研究项目

6207208462072086LJKMZ20220646

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(1)
  • 3