首页|基于自适应动态预测的网络切片资源冲突优化

基于自适应动态预测的网络切片资源冲突优化

扫码查看
网络切片(NS)是5G网络中的一种关键性技术,在多业务动态场景下发挥着重要作用。针对5G网络切片中由切片需求动态变化引起的资源冲突问题,采用一种基于自适应动态预测(ADP)的优化方法,提出"自适应动态预测-模型优化"的优化方案。在自适应动态预测模块,对动态的切片流量进行波动等级划分,以确保切片流量预测的准确性以及自适应性。根据划分结果,分别采用2种不同的循环神经网络算法来预测切片未来时间的流量需求,包括基于注意力机制-双向门控循环单元(Att-BiGRU)的点预测以及基于自举法-BiGRU的区间预测。在模型优化模块,根据预测结果定义用户满意度函数和切片优化配置的开销,将资源冲突优化问题表示为最大化网络收益。由于预测模块的输出可能含有不确定参数,根据鲁棒优化和基于可变粒子数量的粒子群优化算法求解出切片优化配置方案。在仿真部分对所提优化方案进行验证,结果表明,该方法在满足切片动态需求的同时,降低了资源冲突带来的负面影响,其在网络收益以及请求接受率等方面优于对比算法,链路资源利用率达到90%以上。
Optimization of Resource Conflicts in Network Slicing Based on Adaptive Dynamic Prediction
Network Slicing(NS)is a key technology in 5G networks,playing an important role in multi service dynamic scenarios.To address the resource conflict problem caused by dynamic changes in slicing requirements in 5G network slicing,an optimization method based on Adaptive Dynamic Prediction(ADP)is adopted,and an optimization scheme called"adaptive dynamic prediction-model optimization"is proposed.In the adaptive dynamic prediction module,the fluctuation level of dynamic slice traffic is divided to ensure the accuracy and adaptability of slice traffic prediction.Based on the partitioning results,two different Recurrent Neural Network(RNN)algorithms are used to predict the future traffic demand of slices,including point prediction based on Attention mechanism-Bidirectional Gated Recurrent Unit(Att-BiGRU)and interval prediction based on bootstrap method BiGRU.In the model optimization module,the user satisfaction function and the cost of slicing optimization configuration are defined based on the predicted results,and the resource conflict optimization problem is represented as maximizing network benefits.Due to the possibility of uncertain parameters in the output of the prediction module,a slice optimization configuration scheme is solved based on robust optimization and particle swarm optimization algorithms with variable particle numbers.In the simulation section,the proposed optimization scheme is validated.This method not only meets the dynamic requirements of slicing,but also reduces the negative impact of resource conflicts.It outperforms the comparison algorithm in terms of network revenue and request acceptance rate,with a link resource utilization rate of over 90%.

Network Slicing(NS)resource conflictdynamic predictionmodel optimizationRecurrent Neural Network(RNN)

赵季红、张富、崔曌铭

展开 >

西安邮电大学通信与信息工程学院,陕西 西安 710121

西安交通大学电子信息工程学院,陕西 西安 710049

网络切片 资源冲突 动态预测 模型优化 循环神经网络

国家重点研发计划重点专项

2018YFB1800305

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(1)
  • 3