首页|基于各向异性注意力的双分支血管分割模型

基于各向异性注意力的双分支血管分割模型

扫码查看
血管分割对于血管疾病的诊断和治疗具有重要意义,但由于血管边界模糊、病变血管的形状多变且不同样本之间的差异性较大,因此要求分割模型能够准确地挖掘血管与背景类间的差异性以及血管内部的连通性。提出一种基于中心线约束与各向异性注意力的新型三维血管分割网络CAU-Net。针对血管分割的难点,对基础网络结构ResU-Net进行改进,构建各向异性注意力模块,该模块根据管腔结构特有的空间各向异性,从3个方向提取血管空间各向异性特征,并对特征通道间的相关性进行建模,学习血管的三维空间信息。采用主-辅双分支模型,b-Net对血管进行语义分割,a-Net学习血管中心线的连续性特征,约束b-Net的血管分割结果,保证血管分割结果的完整性。在公开数据集 3D-IRCADb-01上的实验结果表明,对于门静脉及肝静脉的分割,CAU-Net分别取得(74。80±8。05)%和(76。14±6。89)%的Dice系数、(54。80±8。09)%和(50。40±5。22)%的NSD系数、(72。43±8。26)%和(70。84±6。05)%的clDice系数、(46。47±12。89)%和(39。19±7。97)%的分支检测率以及(67。08±15。59)%和(61。47±9。32)%的树长检测率。在公开脑血管数据集IXI上进行组件消融实验,模型在验证集上的平均Dice、NSD、clDice、BD和TD分别为(94。11±0。39)%、(96。53±0。37)%、(95。83±0。59)%、(98。64±1。63)%和(95。44±1。22)%,相比于 Baseline分别提升了 0。92%、0。82%、0。92%、1。11%和1。60%。CAU-Net血管分割模型能够显著提升血管分割的精度和完整度。
Dual-Branch Vascular Segmentation Model Based on Anisotropic Attention
Vascular segmentation is significant for diagnosing and treating vascular diseases.However,because of the fuzzy boundary of vessels,the variable shape of diseased vessels,and the significant differences between different samples,the segmentation model should accurately determine the differences between vessels and background classes and analyze the connectivity within vessels.This study proposes a novel three-dimensional vascular segmentation network,CAU-Net,based on centerline constraints and anisotropic attention.In response to the difficulties in vascular segmentation,the basic network structure,ResU-Net,is improved to construct an anisotropic attention module.This module extracts vascular spatial anisotropic features from three directions based on the unique spatial anisotropy of the vascular structure and models the correlation between feature channels to learn the three-dimensional spatial information of the vessels.By using the main auxiliary dual-branch model,b-Net performs semantic segmentation on vessels,whereas a-Net learns the continuity features of vessel centerlines,constrains the vascular segmentation results of b-Net,and ensures the integrity of the vascular segmentation results.The experimental results on the publicly available dataset 3D-IRCADb-01 shows that for the segmentation of portal and hepatic veins,CAU-Net achieves Dice coefficients of(74.80±8.05)%and(76.14±6.89)%,NSD coefficients of(54.80±8.09)%and(50.40±5.22)%,clDice coefficients of(72.43±8.26)%and(70.84±6.05)%,Branch Detection(BD)rates of(46.47±12.89)%and(39.19±7.97)%,and Tree length Detection(TD)rates of(67.08±15.59)%and(61.47±9.32)%,respectively.Component ablation experiments are conducted on the publicly available cerebrovascular dataset IXI,and the average Dice,NSD,clDice,BD,and TD values of the model on the validation set are(94.11±0.39)%,(96.53±0.37)%,(95.83±0.59)%,(98.64±1.63)%,and(95.44±1.22)%,respectively.Compared to the Baseline,the average Dice,NSD,clDice,BD,and TD values of the proposed model increased by 0.92%,0.82%,0.92%,1.11%,and 1.60%,respectively.The CAU-Net vascular segmentation model can significantly improve the accuracy and completeness of vascular segmentation.

vascular segmentationcenterline constraintanisotropyattention mechanismdual-branch model

徐晓峰、黄韫栀、徐军

展开 >

南京信息工程大学人工智能学院智慧医疗研究院,江苏 南京 210044

血管分割 中心线约束 各向异性 注意力机制 双分支模型

国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金南京信息工程大学科研启动经费江苏省双创博士经费

U18092056217123062101365617712492022r100

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(1)
  • 3