首页|多率采样机制下多智能体动态事件触发二分一致性研究

多率采样机制下多智能体动态事件触发二分一致性研究

扫码查看
针对满足细节平衡结构的对抗交互多智能体系统,研究多率采样机制下其动态事件触发二分一致性问题。在多率采样机制下,通过构造一个多率缓存器解决多率采样时序不匹配的问题,设计一类多率观测器便于获得系统的估计状态以实现目标控制。通过引入动态事件触发机制,多率观测器在事件触发时刻广播其状态数据至通信网络中的邻居智能体。每个智能体基于触发时刻的观测器状态信息,利用一组开环估计器以获得连续的智能体状态估计值。在此基础上,设计一个分布式控制协议,利用代数黎卡提方程和李雅普诺夫稳定性理论证明系统可以在细节平衡的多智能体系统通信网络中实现二分一致性,并且排除动态事件触发可能导致的芝诺行为。通过一个包含3种不同采样机制和控制方案的对比仿真,证明了所提控制方案的有效性,表明多率采样机制相较于传统的单率采样机制具有更快和更稳定的收敛性能,并且动态事件触发相较于静态事件触发可以进一步降低触发次数。
Research on Dynamic Event-Triggered Bipartite Consensus of Multi-Agent System with a Multi-Rate Sampling Mechanism
Aiming at a Multi-Agent System(MAS)with a detail-balanced antagonistic interaction structure,this study investigates the dynamic event-triggered bipartite consensus problem with a multi-rate sampling mechanism.First,the timing mismatch problem of the multi-rate sampling mechanism is solved by constructing a multi-rate buffer.Moreover,a class of multi-rate observers is designed to obtain the estimated state of the system to achieve the control objective.Second,by introducing a dynamic event-triggered mechanism,the multi-rate observer broadcasts its state data to the neighboring agents in the communication network at event-triggered instants.Each agent uses a set of open-loop estimators to obtain continuous agent state estimates based on the observer states at trigger instants.Next,a distributed control protocol is designed.Using the algebraic Riccati equation and the Lyapunov stability theory,it has been proven that MASs can achieve a bipartite consensus in a communication network with a detail-balanced structure.Furthermore,the Zeno behavior that the dynamic event-triggered mechanism may have caused is excluded.Finally,a simulation comparison,including three different sampling mechanisms and control schemes,is provided to illustrate the effectiveness of the proposed control scheme.It is shown that the multi-rate sampling mechanism has a faster and more stable convergence performance than the traditional single-rate sampling mechanism,and the dynamic event-triggered mechanism can further reduce the number of triggers compared with the static event-triggered mechanism.

Multi-Agent System(MAS)multi-rate sampling mechanismbipartite consensusdynamic event-triggered mechanismdetail-balanced structure

范晓宇、贾新春、李彬、谢云飞

展开 >

山西大学自动化与软件学院,山西 太原 030031

山西大学数学科学学院,山西 太原 030006

多智能体系统 多率采样机制 二分一致性 动态事件触发机制 细节平衡结构

国家自然科学基金

61973201

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(3)
  • 26