首页|基于SwinT-YOLOX模型的自动扶梯行人安全检测算法

基于SwinT-YOLOX模型的自动扶梯行人安全检测算法

扫码查看
自动扶梯被广泛应用在公共场合,乘客摔倒事故如果不能被及时发现并处理,会造成严重的人身伤害,因此实现自动扶梯智能化监控管理势在必行。受自动扶梯运行环境复杂、行人多以及局部遮挡情况的影响,传统的人体姿态特征摔倒检测模型效果不佳且检测速度减慢。融合Swin Transformer和YOLOX目标检测算法的优秀策略,提出一种基于SwinT-YOLOX网络模型的自动扶梯行人摔倒检测算法。采用Swin Transformer模型作为骨干网络,颈部网络使用添加注意力机制的YOLOX模型,进一步提升特征图的多样性和表达能力。此外,利用漏斗修正线性单元视觉激活函数构建CBF模块,改进颈部网络和Head网络结构,从而获得更优的特征检测性能。实验结果表明,针对自建扶梯行人摔倒数据库和网络采集实际扶梯行人摔倒事故,与AlphaPose、OpenPose、YOLOv5等算法相比,该算法检测性能明显提高,行人摔倒平均检测精度可以达到95。92%,检测帧率为24。08帧/s,能够快速、精准地检测到乘客摔倒事故发生,监控管理平台立刻采取安全急停措施以保证乘客安全。
Automatic Escalator Pedestrian Safety Detection Algorithm Based on SwinT-YOLOX Model
Escalators are widely used in public places.If passenger fall accidents cannot be detected and handled in a timely manner,they will cause serious personal injury.Therefore,it is imperative to achieve intelligent monitoring and management of escalators.Owing to the complex operating environment,large number of pedestrians,and local occlusion of escalators,traditional human posture feature fall detection models have poor performance and slow detection speed.A pedestrian fall detection algorithm for escalators is proposed based on the SwinT-YOLOX network model,which combines the excellent strategy of the Swin Transformer and YOLOX object detection algorithms.Adopting the Swin Transformer model as the backbone network,the neck network uses the YOLOX model with an added attention mechanism to further enhance the diversity and expression ability of feature maps.In addition,utilizing the Funnel Rectified Linear Unit(FReLU)visual activation function to construct a CBF module improves the structure of the neck and Head networks,thereby achieving better feature detection performance.The experimental results demonstrate that compared with algorithms such as AlphaPose,OpenPose,and YOLOv5,the detection performance of this algorithm is significantly improved for self-built escalator pedestrian fall databases and network collection of actual escalator pedestrian fall accidents.The average detection accuracy of pedestrian falls can reach 95.92%,with a detection frame rate of 24.08 frames/s,which can quickly and accurately detect the occurrence of passenger fall accidents.The monitoring management platform immediately takes safety emergency stop measures to ensure passenger safety.

automatic escalatorfall detectiondeep learningYOLOX modelSwin Transformer modelFunnel Rectified Linear Unit(FReLU)visual activation function

侯颖、杨林、胡鑫、贺顺、宋婉莹、赵谦

展开 >

西安科技大学通信与信息工程学院,陕西 西安 710054

西安科技大学西安市网络融合通信重点实验室,陕西 西安 710054

自动扶梯 摔倒检测 深度学习 YOLOX模型 Swin Transformer模型 漏斗修正线性单元视觉激活函数

国家自然科学基金国家自然科学基金陕西省科技厅工业攻关项目

62071481619013582022GY-115

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(3)
  • 30