计算机工程2024,Vol.50Issue(4) :68-77.DOI:10.19678/j.issn.1000-3428.0068019

基于并行多注意力的语音增强网络

Speech Enhancement Network Based on Parallel Multi-Attention

张池 王忠 姜添豪 谢康民
计算机工程2024,Vol.50Issue(4) :68-77.DOI:10.19678/j.issn.1000-3428.0068019

基于并行多注意力的语音增强网络

Speech Enhancement Network Based on Parallel Multi-Attention

张池 1王忠 1姜添豪 1谢康民2
扫码查看

作者信息

  • 1. 四川大学电气工程学院,四川成都 610065
  • 2. 国网浙江省电力有限公司温州供电公司,浙江温州 325029
  • 折叠

摘要

针对受干扰语音的频域增强问题,提出一种基于并行多注意力机制和编解码结构的语音增强网络(PMAN).网络输入经过短时傅里叶变换(STFT)的语音频域特征,包含振幅谱和复数谱,编码器使用密集卷积模块对输入数据信息进行整合,中间层的并行多注意力模块学习频域的局部和全局信息,并融合局部块注意力(LPA)机制捕捉语音频域二维(2D)结构,实现干净语音与干扰因素的2D层面分离.解码器将学习到的信息进行整合,分别生成振幅掩模和复数频谱,根据加权求和生成最终的语音复数频谱,使用时域与频域联合损失函数实现相位信息的融合.在VoiceBank+DEMAND语音数据集上的实验结果表明,与基于两阶段变换器的时域语音增强神经网络(TSTNN)相比,经过PMAN增强后语音的客观语音质量评价(PESQ)、短时客观可懂度(STOI)、分段信噪比(SSNR)指标值分别提升10.80/、1.1%、11.8%,具有较好的语音增强效果.

Abstract

Regarding the issue of the frequency-domain enhancement of speech affected by interference,a speech enhancement network based on a parallel multi-attention mechanism and an encoding and decoding structure,known as PM AN,is proposed.The network uses speech frequency-domain features obtained through a Short-Time Fourier Transform(STFT),including amplitude and complex spectra.The encoder integrates input data using dense convolutional modules.The parallel multi-attention module of the intermediate layer learns both local and global information in the frequency-domain and incorporates a Local Patch Attention(LPA)mechanism to capture the Two-Dimensional(2D)structure of the speech frequency-domain,achieving separation between clean speech and interference factors in the 2D space.The decoder integrates the learned information and generates amplitude masks and complex spectra separately.The final speech complex spectrum is obtained via weighted summation,and a joint time-and frequency-domain loss function is used to fuse the phase information.Experimental results on the VoiceBank+DEMAND speech dataset demonstrate that PMAN achieves better speech enhancement performance than a time-domain speech enhancement Neural Network based on a Two-Stage Transformer(TSTNN),with improvements of 10.8%in Perceptual Evaluation of Speech Quality(PESQ),1.1%in Short-Time Objective Intelligibility(STOI),and 11.8%in Segmental Signal-to-Noise Ratio(SSNR).

关键词

语音增强/频域/多注意力机制/Transformer网络/并行模块

Key words

speech enhancement/frequency-domain/multi-attention mechanism/Transformer network/parallel module

引用本文复制引用

基金项目

四川省科技厅科技支撑计划(2015FZ061)

四川省教育厅自然科学重点科研项目(2018)(18ZA0307)

出版年

2024
计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
参考文献量37
段落导航相关论文