首页|融合双图卷积与门控线性单元的方面级情感分析模型

融合双图卷积与门控线性单元的方面级情感分析模型

Aspect-Level Sentiment Analysis Model Combining Double Graph Convolution and Gated Linear Unit

扫码查看
方面级情感分析旨在确定句子中给定方面的情感极性.现有的基于图神经网络的方面级情感分析存在以下2个方面的不足:忽略了不同类型的句法依存关系和语料库中的词共现信息,以及不能准确地控制情感信息流向给定方面.针对以上问题,提出融合双图卷积与门控线性单元(GLU)的方面级情感分析模型.该模型首先采用全局词汇图来编码语料库中的词共现信息,在词汇图和句法图上利用分类概括结构来区分各种词共现频率和不同类型的句法依存关系.然后分别在2个图上进行双层卷积,继而使用BiAffine变换模块作为桥梁,在2个图卷积网络模块之间有效地交换相关特征,从而有效地融合句法信息和词汇信息.最后利用GLU控制情感信息流向给定方面,使模型可以更专注地分析与该方面相关的情感信息,避免不相关的情感信息影响对给定方面的情感分析结果,从而提高分析的准确性.实验结果表明,在Twitter、Laptop14、Restaurant15和Restaurant16数据集上,该模型的准确率分别达到74.82%、77.61%、82.29%和89.81%,F1值分别达到72.97%、73.52%、67.72%和73.37%,方面级情感分类效果明显优于其他基线模型.
The aspect-level sentiment analysis aims to determine the sentiment polarity of a given aspect of a sentence.The existing graph neural network-based aspect-level sentiment analysis has two shortcomings:first,it ignores different types of syntactic dependencies and word co-occurrence information in the corpus;second,it cannot accurately control the flow of sentiment information to a given aspect.To address these problems,this study proposes an aspect-level sentiment analysis model that combines dual graph convolution and a Gated Linear Unit(GLU).The model first uses the global vocabulary map to encode word co-occurrence information in the corpus,and thereafter uses the classification summary structure to distinguish the frequency of co-occurrence of various words and different types of syntactic dependencies on the vocabulary and syntax maps.Double-layer convolution is thereafter performed on the two graphs,and the BiAffine transform module is used as a bridge to effectively exchange relevant features between the two Graph Convolution Network(GCN)modules,thus effectively integrating syntactic and lexical information.Finally,the GLU is used to control the flow of sentiment information to a given aspect such that the model can focus more on analyzing the sentiment information related to this aspect and avoid irrelevant sentiment information from affecting the sentiment analysis results of a given aspect,thus improving the accuracy of the analysis.The experimental results demonstrate that on the four datasets of Twitter,Laptop14,Restaurant15,and Restaurant16,the accuracy of the model reached 74.82%,77.61%,82.29%,and 89.81%,respectively,and the F1 value reached 72.97%,73.52%,67.72%,and 73.37%,respectively.The aspect-level sentiment classification performance is significantly better than those of the other baseline models.

aspect-level sentiment analysisword co-occurrence informationdouble graph convolutioninformation interactionGated Linear Unit(GLU)

杨春霞、吴亚雷、闫晗、黄昱锟

展开 >

南京信息工程大学自动化学院,江苏南京 210044

江苏省大数据分析技术重点实验室,江苏南京 210044

江苏省大气环境与装备技术协同创新中心,江苏南京 210044

方面级情感分析 词共现信息 双图卷积 信息交互 门控线性单元

国家自然科学基金国家自然科学基金

6127322951705260

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(4)
  • 21