首页|基于位置信息和注意力机制的路面裂缝检测

基于位置信息和注意力机制的路面裂缝检测

扫码查看
路面裂缝是造成公路安全问题的主要因素。传统的裂缝检测通常以人工检测为主,存在效率低、不安全等问题,此外现有深度学习检测模型在面临阴影遮挡、背景复杂等干扰因素时会造成裂缝检测不完整。针对上述问题,提出一种基于位置信息和注意力机制的路面裂缝检测模型(PA-TransUNet)。首先,通过混合编码器接收输入图像,提取裂缝特征信息,引入查询项、键、值的位置信息,提升编码器Transformer中自注意力机制捕获裂缝形状和补偿特征信息丢失的能力。然后,输入裂缝特征到解码器进行上采样,设计一种基于注意力门控的解码模块(AGDM),AGDM通过抑制非裂缝区域来加强对裂缝区域的学习,提高裂缝检测的准确性和完整性。实验结果表明,PA-TransUNet模型在路面裂缝检测数据集(CFD)和Cracktree200这2个公开数据集上的F1值分别达到87。44%和82。58%。此外,为了进一步检验PA-TransUNet模型在实际工程中的裂缝检测能力,又在自制无人机裂缝(UAV Cracks)数据集上取得了 88。68%的F1值,由此可见其能较好地满足实际工程中的裂缝检测需求。
Road Crack Detection Based on Position Information and Attention Mechanism
Road cracks are the main cause of highway safety problems.Traditional crack detection is typically based on manual detection,which faces problems such as low efficiency and insecurity.In addition,the existing deep learning detection model causes incomplete crack detection when facing interference factors,such as shadow occlusion and complex backgrounds.To address these problems,a road crack detection model based on location information and an attention mechanism,known as PA-TransUNet,is proposed.First,the hybrid encoder receives the input image,extracts the crack feature information,and introduces the position information of the query,key,and value to improve the ability of the self-attention mechanism in the encoder Transformer to capture the crack shape and compensate for the loss of feature information.Subsequently,the crack features are input into the decoder for upsampling,and an Attention Gating-based Decoding Module(AGDM)is designed to strengthen the learning of crack regions by suppressing non-crack regions and improving the accuracy and integrity of crack detection.The experimental results demonstrate that the F1 values of the PA-TransUNet model on the CrackForest Dataset(CFD)and Cracktree200 public datasets reach 87.44%and 82.58%,respectively.In addition,to further test the crack detection ability of the PA-TransUNet model in practical engineering,an F1 value of 88.68%is achieved on the self-made Unmanned Aerial Vehicle Cracks(UAV Cracks)dataset,which shows that it can better meet the needs of crack detection in practical engineering.

image processingroad crack detectionsemantic segmentationposition informationattention mechanism

王安政、党建武、岳彪、杨景玉

展开 >

兰州交通大学电子与信息工程学院,甘肃兰州 730070

轨道交通信息与控制国家级虚拟仿真实验教学中心,甘肃兰州 730070

图像处理 路面裂缝检测 语义分割 位置信息 注意力机制

中央引导地方科技发展资金项目甘肃省教育科技创新项目甘肃省军民融合专项甘肃省重点研发计划甘肃省知识产权计划

22ZY1QA0022021jyjbgs-052020JG0121YF5GA15821ZSCQ013

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(4)
  • 27