首页|原型对齐和域感知的零样本哈希

原型对齐和域感知的零样本哈希

扫码查看
为了实现对未见类别图像的有效检索,零样本哈希(ZSH)方法通常将类别属性中的监督知识从已见类转移到未见类。然而,获取类别属性需要花费额外的计算资源,并且视觉特征和类别属性之间存在跨模态的异构鸿沟。此外,现有方法忽视了强偏差问题,导致模型错误地将已见类样本识别为未见类,从而降低了检索精度。与此同时,ZSH在保持哈希码和原始数据语义一致性以及实现哈希码的离散优化等方面也面临着挑战。为此,提出一种原型对齐和域感知的ZSH方法,其不依赖类别属性等特殊监督知识,能够节省注释属性的花销同时避免跨模态异构鸿沟的影响。首先计算各类样本在海明空间中的原型,然后通过对齐哈希码和类原型来学习语义一致的哈希码。为了避免松弛策略造成的量化误差,提出一种离散优化算法来求解哈希码的离散约束,并且实现线性的计算复杂度。同时,设计一个域感知策略用于分离源域和目标域样本,以缓解强偏差问题的影响。在aPY、AWA2和ImageNet数据集上的实验结果表明,该方法的检索精度相较对比方法中的最优值分别提升了 2。6、9。4和14。9个百分点,训练时间也远低于大部分对比方法。
Prototype-Aligned and Domain-Aware Zero-Shot Hashing
Zero-Shot Hashing(ZSH)methods typically rely on category attributes to transfer supervised knowledge from seen to unseen classes,and efficiently retrieve unseen category images.However,obtaining category attributes requires additional computing resources,and a heterogeneous gap exists between visual features and category attributes.Additionally,existing methods ignore the strong bias problem,leading the model to mistakenly identify seen class samples as unseen classes,thereby reducing retrieval accuracy.Moreover,ZSH encounters challenges in preserving semantic consistency between hash codes and the original data,as well as in achieving discrete optimization of hash codes.To address these challenges,a prototype-aligned and domain-aware ZSH method is proposed.It eliminates the dependence on special supervision knowledge,such as category attributes,thus reducing the cost of attribute annotation and avoiding the impact of cross-modal heterogeneous gaps.Specifically,the method first calculates prototypes for each class in the Hamming space and thereafter aligns the hash codes with the class prototypes to learn semantically consistent hash codes.To mitigate the quantization errors caused by relaxation strategies,a discrete optimization algorithm is proposed to address the discrete constraints of hash codes and achieve linear computational complexity.Moreover,a domain-aware strategy is used to separate the samples from the source and target domains,thereby alleviating the strong bias problem.The experimental results on the aPY,AWA2,and ImageNet datasets demonstrate that the retrieval accuracy of this method is improved by 2.6,9.4,and 14.9 percentage points compared to the optimal values in the comparison method,respectively,and the training time is significantly reduced compared to most baseline methods.

hashingimage retrievalZero-Shot Learning(ZSL)prototype alignmentdomain awareness

董峰、王永欣、马玉玲、王奎奎

展开 >

山东建筑大学计算机科学与技术学院,山东济南 250101

哈希 图像检索 零样本学习 原型对齐 域感知

国家自然科学基金山东省自然科学基金山东省自然科学基金山东建筑大学特聘副教授专项

62302276ZR2022QF116ZR2023QF132X22051Z

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(5)
  • 31