首页|基于贝叶斯衍生分类器的社交网络用户影响力评价模型

基于贝叶斯衍生分类器的社交网络用户影响力评价模型

扫码查看
为了防止社交网络中的负面信息快速传播,则需要通过评价社交网络中用户的影响力来找出影响力大的社交网络节点。针对传统算法在社交网络领域中交叉特性缺失的问题,结合高斯贝叶斯衍生分类器,提出一种网络用户影响力评价模型。该模型结合用户活跃度、用户联系度、用户覆盖度等维度,建立社交网络用户影响力刻画指标,同时考虑社交网络用户之间的关系特征和用户自身的行为特征,降低僵尸粉和垃圾社交网络对网络评价结果的影响,通过建立连续属性朴素贝叶斯分类器方法,提出基于高斯贝叶斯衍生分类器的模型求解方法。使用新浪微博中152 059 423条媒体报纸用户评论作为实验数据,分析影响该评价模型的关键因素,利用仿真软件完成和HRank等传统模型对比实验,结果表明,该模型体现了社交网络用户的交叉特性,提升了模型的实用性,相比于其他传统算法,该模型分类误差更趋于稳定,分类结果的误差率更低,适应性更好。
Social Network User Influence Evaluation Model Based on Bayesian Derived Classifier
To prevent the rapid spread of negative information on social networks,influential social network nodes must be identified by evaluating the influence of users on social networks.To address the problem of missing cross-characteristics in traditional algorithms in the field of social networks,this study proposes a network user influence evaluation model combined with Gaussian Bayesian-derived classifiers.The model first combines user activity,contact,coverage,and other dimensions to establish social network user influence characterization indicators.Simultaneously,the relationship characteristics between social network users and user behavior characteristics are considered to reduce the impact of zombie fans and garbage social networks on network evaluation results.A model-solving method based on a Gaussian Bayesian classifier is proposed by establishing a continuous attribute-naive Bayes classifier method.The key factors affecting the evaluation model are analyzed in depth using 152 059 423 media and newspaper user comments from Sina Weibo as experimental data.A comparative experiment with traditional models,such as HRank,is conducted using simulation software to verify the feasibility of the model.The experimental results indicate that the model reflects the cross-characteristics of social network users and improves its practicality.Compared to traditional algorithms,this model tends to have more stable classification errors,lower error rates in the classification results,and better adaptability.

social networkinfluenceBayesian derived classifierevaluation modeluser activity

周春良、刘仰光、孟祥佩

展开 >

宁波财经学院金融与信息学院,浙江宁波 315175

宁波财经学院基础学院,浙江宁波 315175

社交网络 影响力 贝叶斯衍生分类器 评价模型 用户活跃度

浙江省哲学社会科学规划项目国家自然科学基金宁波财经学院科研项目硕士学位培育点项目

21NDJC167YB620011991320230911

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(6)