首页|面向边缘智能的神经网络模型生成与部署研究

面向边缘智能的神经网络模型生成与部署研究

扫码查看
随着移动计算、第五代移动通信技术(5G)以及物联网(IoT)技术的不断演进,各类终端设备的数量呈现指数级增长。这种激增的终端设备连接到网络产生了巨大的数据流,对于需要实时处理和快速响应用户任务的需求提出了新的挑战。尤其是在这些海量数据中,半结构化和非结构化数据所占比例较大,这使得神经网络因其独特的优势而得到了广泛应用。为了提高数据处理能力和推理精度,神经网络模型会被设计得非常复杂,其存储和运行均需要消耗大量的计算资源。然而,边缘设备通常只配置有限的计算资源,无法满足存储和运行复杂神经网络模型的需求,需要借助云计算中心来完成这些任务。这种云协同会引发响应延时和增加网络带宽消耗,并带来用户隐私数据泄露等潜在风险。为了解决这些问题,提出一种面向边缘智能的神经网络模型快速生成与自动化部署(NGD)方法,根据边缘设备的硬件配置和承载的具体计算任务需求,生成与其匹配的神经网络模型,并将其快速部署在目标设备上,实现设备本地推理。在3种典型的硬件平台上的神经网络模型生成与部署实验结果表明,NGD方法能够高效地为资源受限的边缘设备生成匹配的神经网络模型,并快速地将其部署在设备上进行推理任务。
Research on Neural Network Model Generation and Deployment for Edge Intelligence
The exponential growth of diverse terminal devices,driven by advancements in mobile computing,5th Generation mobile communication(5G),and Internet of Things(IoT)technologies,has generated vast volumes of semi-structured and unstructured data,as these devices connect to networks.Neural networks are widely applicable because of their unique advantages in mining data.To enhance data processing capabilities and inference accuracy,neural network models are often designed to be complex and thus consume substantial computational resources in both storage and execution.However,edge devices typically have limited computational resources and cannot satisfy the storage and inference requirements of complex neural network models.Therefore,they often rely on cloud computing centers to perform these tasks.This cloud-based collaboration can lead to increased response latency and network bandwidth consumption,incurring potential risks such as the infringement of user privacy through data leakage.To address these issues,this paper introduces Neural network Generation and Deployment(NGD),a method for rapidly generating and deploying tailored neural network models on edge devices,whereby neural network models that match the hardware configuration of edge devices and specific computational task requirements are generated and rapidly deployed onto target devices for local inference.Experiments are conducted on three typical edge devices,and the results demonstrate the effectiveness of NGD in generating and deploying models,affirming its practicality and effectiveness.

edge intelligenceon-device inferencemodel generationautomatic deploymentedge device

谭郁松、李恬、张钰森

展开 >

国防科技大学计算机学院,湖南长沙 410073

边缘智能 设备端推理 模型生成 自动化部署 边缘设备

国家自然科学基金

U19A2060

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(8)
  • 3