首页|基于Transformer的多阶段运动模糊图像修复网络

基于Transformer的多阶段运动模糊图像修复网络

扫码查看
运动模糊是导致图像退化的常见原因,其限制了图像的可读性和后续处理效果。针对卷积网络感受野有限以及常规多阶段网络中信息丢失的问题,提出一种基于Transformer的多阶段去模糊网络。网络采用多阶段编码器-解码器结构,在单个阶段内和多个阶段间采用跳跃连接来增强信息的传递。首先,高效Transformer模块采用通道注意力和深度卷积来处理图像的全局和局部信息;其次,多分支结构的前馈传播网络通过引入多个并行的分支,实现了不同尺度和不同层次的特征提取和融合;最后,通过多阶段的残差处理实现更优的图像恢复结果。实验结果显示,在GoPro数据集上该网络的峰值信噪比(PSNR)达到32。23 dB,结构相似性指数(SSIM)达到0。955,在 HIDE 数据集上 PSNR 和 SSIM 分别达到 30。15 dB 和 0。930,优于 DeepDeblur、DeblurGAN-V2 等模型。
Multi-Stage Motion Blur Image Restoration Network Based on Transformer
Motion blur is a common cause of image degradation that limits image readability and subsequent processing.A multi-stage deblurring network based on the Transformer is proposed to address the limited receptive field of convolutional networks and information loss in conventional multi-stage networks.The network adopts a multi-stage encoder-decoder structure with skip connections within and between stages to enhance information propagation.First,an efficient Transformer module is used to process the global and local information of the image using channel attention and depthwise convolution.Second,a multi-branch feedforward network with multiple parallel branches is introduced to extract and fuse features at different scales and levels.Finally,superior image restoration results are achieved through multi-stage residual learning.Experimental results show that the proposed method achieves a Peak Signal-to-Noise Ratio(PSNR)of 32.23 dB and Structural Similarity Index Measure(SSIM)of 0.955 on the GoPro dataset,and a PSNR of 30.15 dB and SSIM of 0.930 on the HIDE dataset,demonstrating a performance superior to DeepDeblur,DeblurGAN-V2,and other models.

deep learningTransformer modelattention mechanismimage restorationmulti-scale network

朱凯、李理、张彤、江晟、别一鸣

展开 >

长春理工大学物理学院,吉林长春 130022

长春理工大学电子信息工程学院,吉林长春 130022

吉林大学交通学院,吉林长春 130022

深度学习 Transformer模型 注意力机制 图像修复 多尺度网络

吉林省科技发展计划重点研发项目

20210203214SF

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(9)