计算机工程2024,Vol.50Issue(10) :119-136.DOI:10.19678/j.issn.1000-3428.0068502

多策略改进的蜣螂优化算法

Multi-Strategy Improved Dung Beetle Optimization Algorithm

匡鑫 阳波 马华 唐文胜 肖宏峰 陈灵
计算机工程2024,Vol.50Issue(10) :119-136.DOI:10.19678/j.issn.1000-3428.0068502

多策略改进的蜣螂优化算法

Multi-Strategy Improved Dung Beetle Optimization Algorithm

匡鑫 1阳波 2马华 1唐文胜 1肖宏峰 2陈灵2
扫码查看

作者信息

  • 1. 湖南师范大学信息科学与工程学院,湖南长沙 410081
  • 2. 湖南师范大学工程与设计学院,湖南长沙 410081
  • 折叠

摘要

针对蜣螂优化算法(DBO)搜索精度较差、全局搜索能力不足、容易陷入局部最优等问题,提出一种多策略改进的蜣螂优化算法.选用混沌反向学习策略初始化蜣螂种群,使得蜣螂个体在解空间内分布均匀,提升种群多样性;引入带非线性权重的黄金正弦策略改进滚球行为,协调算法的全局搜索与局部挖掘能力;借鉴麻雀搜索算法的加入者位置更新策略改进觅食行为,促使种群向最优位置靠近,提高算法收敛速度与收敛精度;以分段函数形式改进偷窃行为,利于种群在迭代前期对全局充分探索,避免算法过早收敛;采用非线性权重的柯西-高斯变异策略对当前最优位置进行随机扰动,引导算法跳出局部最优位置.将所提算法与5种优化算法在23个基准函数、12个CEC2022测试函数及2个工程优化问题上进行实验对比,结果表明,所提算法至少在21个基准函数、10个CEC2022测试函数及2个工程优化问题上的性能指标优于其他算法,且排名第1,相比于原始蜣螂优化算法,在收敛精度、收敛速度、全局搜索能力以及稳定性上都有较大提升.

Abstract

The existing Dung Beetle Optimization(DBO)algorithm has the disadvantages of poor search accuracy and insufficient global search ability,thereby easily falling into local optima.This paper proposes a multi-strategy improved dung beetle optimization algorithm that uses a chaotic opposition-based learning strategy to initialize the dung beetle population,whereby dung beetle individuals are evenly distributed in solution space and population diversity is improved.The golden sine strategy with a nonlinear weight is introduced to improve the ball-rolling behavior and coordinate the global search and local mining ability of the algorithm.Foraging behavior is improved by referring to the position update strategy of the sparrow search algorithm,which brings the population close to the optimal position and improves convergence speed and algorithmic accuracy.Stealing behavior is improved by introducing a piecewise function,which benefits the population in the full global exploration in the early iteration stages,to avoid premature convergence of the algorithm.The Cauchy-Gaussian mutation strategy with a nonlinear weight is used to randomly perturb the current optimal position and guide the algorithm to jump out of the local optimal position.The proposed algorithm is compared with five optimization algorithms using 23 benchmark functions,12 CEC2022 test functions,and two engineering optimization problems.The experimental results show that the proposed algorithm is superior to the other algorithms and ranks first among at least 21 benchmark functions,10 CEC2022 test functions,and two engineering optimization problems.Compared with the original dung beetle optimization algorithm,the proposed algorithm exhibits significant improvements in convergence accuracy,convergence speed,global search ability,and stability.

关键词

蜣螂优化算法/混沌反向学习/黄金正弦/麻雀搜索算法/柯西-高斯变异

Key words

Dung Beetle Optimization(DBO)algorithm/chaotic reverse learning/golden sine/sparrow search algorithm/Cauchy-Gaussian mutation

引用本文复制引用

基金项目

国家自然科学基金面上项目(62077014)

出版年

2024
计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
参考文献量7
段落导航相关论文