首页|基于多尺度时空特征与软注意力机制的交通流预测方法

基于多尺度时空特征与软注意力机制的交通流预测方法

扫码查看
交通流预测在规划交通系统、优化道路资源和缓解交通拥堵等方面具有重要意义。针对交通流预测中时间周期性特征提取不充分的问题,提出一种基于多尺度时空特征和软注意力机制的交通流预测方法MSTFSA。首先,利用图交谈注意力网络(GTHAT)提取空间数据的非欧几里得结构特征,通过分配动态权重表征不同时间相邻道路交通流的影响程度;其次,利用双向增强注意力门控循环单元(Bi-EAGRU)结构提取时间数据的连续性关联特征,增强每个时刻的时间特征与上下时刻的联系;然后,基于软注意力机制融合周周期、日周期和近邻时间3个尺度下的相似交通流趋势,实现对时间周期性特征的充分提取,最后,结合高速公路数据集PeMS04和PeMS08验证MSTFSA的预测精度。实验结果表明,MSTFSA的交通流预测精度表现出良好效果,与基线模型STSGCN和ASTGCN相比,在PeMS04数据集上的预测均方根误差(RMSE)分别降低7。15%和3。8%,平均绝对误差(MAE)分别降低7。79%和3。99%。MSTFSA能较充分地提取并融合交通数据的多时间尺度时空特征,在交通流预测精度提升方面表现出一定的优势。
Traffic Flow Prediction Method Based on Multi-Scale Spatio-Temporal Features and Soft Attention Mechanism
Traffic flow prediction has considerable value in design of transportation systems,optimization of road resources,and mitigation of traffic congestion.To address the issue of limited prediction accuracy due to insufficient extraction of temporal periodic features in traffic flow forecasting,in this study,a multi-scale spatio-temporal features soft attention mechanism method MSTFSA is proposed for traffic flow forecasting.The method is based on multi-scale spatial and temporal features and a soft attention mechanism.First,the Graph Talking Head Attention Network(GTHAT)is used to extract the non-Euclidean structural features of the spatial data.The dynamic weights are calculated to represent the impact of traffic flow on adjacent roads at different times.Second,a Bidirectional Enhanced Attention Gated Recurrent Unit(Bi-EAGRU)is utilized to capture the continuity correlation features of temporal data,thereby enhancing the temporal features of each moment and the continuity between adjacent moments.Subsequently,similar traffic flow trends at three scales of periodicity:weekly,daily,and nearest-neighbor time are fused based on soft attention to implement the comprehensive extraction of temporal periodic features.Finally,the prediction accuracy of MSTFSA is verified on the highway datasets PeMS04 and PeMS08.The experimental results demonstrate that MSTFSA provides distinct advantages in terms of traffic flow prediction accuracy.Compared with the baseline methods of Spatio-Temporal Synchronous Graph Convolutional Network(STSGCN)and Attention-based Spatio-Temporal Graph Convolutional Network(ASTGCN),MSTFSA not only reduces the Root Mean Square Error(RMSE)by 7.15%and 3.8%but also decreases the Mean Absolute Error(MAE)by 7.79%and 3.99%on PeMS04 dataset,respectively.In summary,MSTFSA can efficiently extract and merge the multi-temporal and spatial attributes of traffic data,thereby considerably improving the prediction accuracy of traffic flow.

traffic flow predictionspatio-temporal uniongraph attention networksoft attention mechanismBidirectional Gated Recurrent Unit(Bi-GRU)

史昕、曹凤腾、纪艺、马峻岩

展开 >

长安大学信息工程学院,陕西西安 710064

山东高速信息集团有限公司,山东济南 250102

交通流预测 时空域联合 图注意力网络 软注意力机制 双向门控循环单元

2024

计算机工程
华东计算技术研究所 上海市计算机学会

计算机工程

CSTPCD北大核心
影响因子:0.581
ISSN:1000-3428
年,卷(期):2024.50(12)