首页|基于注意力机制的文本情感倾向性研究

基于注意力机制的文本情感倾向性研究

扫码查看
社交媒体上短文本情感倾向性分析作为情感分析的一个重要分支, 受到越来越多研究人员的关注.为了改善短文本特定目标情感分类准确率, 提出了词性注意力机制和LSTM相结合的网络模型PAT-LSTM.将文本和特定目标映射为一定阈值范围内的向量, 同时用词性标注处理句子中的每个词, 文本向量、词性标注向量和特定目标向量作为模型的输入.PAT-LSTM可以充分挖掘句子中的情感目标词和情感极性词之间的关系, 不需要对句子进行句法分析, 且不依赖情感词典等外部知识.在SemEval2014-Task4数据集上的实验结果表明, 在基于注意力机制的情感分类问题上, PAT-LSTM比其他模型具有更高的准确率.
Text sentiment analysis based on attention mechanism
As an important branch of sentiment analysis, short-text sentiment classification on social media has attracted more and more researchers' attention. To improve the accuracy of the short text target-based sentiment classification, we propose a network model that combines the part-of-speech attention mechanism with long short-term memory (PAT-LSTM). The text and the target are mapped to a vector within a certain threshold range. In addition, each word in the sentence is marked by the part-of-speech. The text vector, target vector and part-of-speech vector are then input into the model. The PAT-LSTM model can fully explore the relationship between target words and emotional words in a sentence, and it does not require syntactic analysis of sentences or external knowledge such as sentiment lexicon. The results of comparative experiments on the Eval2014 Task4 dataset show that the PAT-LSTM network model has higher accuracy in attention-based sentiment classification.

attention mechanismLSTMshort textsentiment analysis

裴颂文、王露露

展开 >

上海理工大学光电信息与计算机工程学院, 上海 200093

复旦大学管理学院, 上海 200433

注意力机制 长短时记忆网络 短文本 情感分析

上海市浦江人才计划中国博士后科学基金国家自然科学基金国家自然科学基金计算机体系结构国家重点实验室开放题目

16PJ14076002017M6102306133200961775139CARCH201807

2019

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCDCSCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2019.41(2)
  • 6
  • 6