计算机工程与科学2024,Vol.46Issue(1) :63-71.DOI:10.3969/j.issn.1007-130X.2024.01.007

基于智能进化算法的可见水印对抗攻击

Adversarial visible watermark attack based on intelligent evolutionary algorithm

季俊豪 张玉书 赵若宇 温文媖 董理
计算机工程与科学2024,Vol.46Issue(1) :63-71.DOI:10.3969/j.issn.1007-130X.2024.01.007

基于智能进化算法的可见水印对抗攻击

Adversarial visible watermark attack based on intelligent evolutionary algorithm

季俊豪 1张玉书 1赵若宇 1温文媖 2董理3
扫码查看

作者信息

  • 1. 南京航空航天大学计算机科学与技术学院,江苏南京 211106
  • 2. 江西财经大学信息管理学院,江西南昌 330032
  • 3. 宁波大学信息科学与工程学院,浙江宁波 315000
  • 折叠

摘要

随着公民版权意识的提高,越来越多含有水印的图像出现在生活中.然而,现有的研究表明,含有水印的图像会导致神经网络分类错误,这对神经网络的普及和应用构成了巨大的威胁.对抗训练是解决这类问题的防御方法之一,但是需要使用大量的水印对抗样本作为训练数据.为此,提出了一种基于智能进化算法的可见水印对抗攻击方法来生成高强度的水印对抗样本.该方法不仅能快速生成水印对抗样本,而且还能使其最大程度地攻击神经网络.此外,该方法还加入了图像质量评价指标来约束图像的视觉损失,从而使水印对抗样本更加美观.实验结果表明,所提方法相比于基准水印攻击方法时间复杂度更低,相比于基准黑盒攻击对神经网络攻击成功率更高.

Abstract

With the increasing awareness of citizen copyright,more and more images containing wa-termarks are appearing in daily life.However,existing research shows that images with watermarks can cause neural network misclassification,posing a significant threat to the popularization and application of neural networks.Adversarial training is one of the defensive methods to solve this problem,but it re-quires a large number of watermark adversarial samples as training data.To address this issue,this pa-per proposes a visible watermark adversarial attack method based on intelligent evolutionary algorithm to generate high-intensity watermark adversarial samples.This method can not only quickly generate watermark adversarial samples,but also maximize the attack on the neural network.In addition,this method incorporates image quality evaluation metrics to constrain the visual loss of the image,making the watermark adversarial samples more visually appealing.The comprehensive experimental results show that the proposed method has lower time complexity than the benchmark watermark attack meth-od,and has a higher attack rate on neural networks compared to the benchmark black box attack.

关键词

对抗攻击/水印/图像质量评价指标/优化/神经网络

Key words

adversarial attack/watermark/image quality evaluation/optimization/neural network

引用本文复制引用

基金项目

国家自然科学基金(62072237)

南京航空航天大学研究生科研与实践创新计划(xcxjh20231603)

出版年

2024
计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
参考文献量1
段落导航相关论文