首页|结合坐标注意力与生成式对抗网络的图像超分辨率重建

结合坐标注意力与生成式对抗网络的图像超分辨率重建

扫码查看
针对现有生成式对抗网络GAN的图像超分辨率重建模型中存在着特征信息利用不充分、VGG式判别器对局部细节的判断能力较弱以及训练不稳定的问题,提出了一种结合坐标注意力与生成式对抗网络的图像超分辨率重建模型。首先,以嵌有坐标注意力的残差块构建生成器,沿通道和空间2个维度聚合特征,更充分地提取特征。然后,调整Dropout加入网络的方式使其作用于生成器中,提高模型的泛化能力。接着,以U-Net结构构造判别器,输出详细的逐像素反馈,以获取真假图像间的局部差异。最后,在判别器中引入谱归一化正则化,稳定GAN的训练。实验结果表明,当放大因子为4时,在基准测试集Set5和Set14上取得的峰值信噪比平均提高了 1。75 dB,结构相似性平均提高了 0。038,能够重建出更加清晰且真实的图像,重建图像具有良好的视觉效果。
Combining coordinate attention and generative adversarial network for image super-resolution reconstruction
An image super-resolution reconstruction model combining coordinate attention and gener-ative adversarial networks is proposed to address the problems of inadequate utilization of feature infor-mation,weak judgment of local details by VGG discriminators,and unstable training in the existing im-age super-resolution reconstruction model of generative adversarial networks.Firstly,a generator is constructed with residual blocks embedded with coordinate attention to aggregate features along both channel and spatial dimensions to extract features more adequately.The Dropout is also adjusted to join the network in such a way that it acts in the generator to improve the generalization ability of the model.Secondly,the discriminator is constructed with U-Net structure to output detailed pixel-by-pixel feed-back to obtain the local difference between the true and false images.Finally,spectral normalization regularization is introduced into the discriminator to stabilize the training of GAN.The experimental re-sults show that when the amplification factor is 4,the peak signal-to-noise ratio obtained on the bench-mark test sets Set5 and Set14 is increased by 1.75 dB on average,and the structural similarity is in-creased by 0.038 on average,which can reconstruct clearer and more realistic images with good visual effects.

super-resolution reconstructiongenerative adversarial networkcoordinate attentionU-Net discriminator

彭晏飞、孟欣、李泳欣、刘蓝兮

展开 >

辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛 125100

超分辨率重建 生成式对抗网络 坐标注意力 U-Net式判别器

国家自然科学基金辽宁省高等学校基本科研项目辽宁省高等学校基本科研项目

61772249LJKZ0358LJKQZ2021152

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(1)
  • 26