计算机工程与科学2024,Vol.46Issue(1) :170-178.DOI:10.3969/j.issn.1007-130X.2024.01.018

基于无监督预训练的跨语言AMR解析

Cross-lingual AMR parsing based on unsupervised pre-training

范林雨 李军辉 孔芳
计算机工程与科学2024,Vol.46Issue(1) :170-178.DOI:10.3969/j.issn.1007-130X.2024.01.018

基于无监督预训练的跨语言AMR解析

Cross-lingual AMR parsing based on unsupervised pre-training

范林雨 1李军辉 1孔芳1
扫码查看

作者信息

  • 1. 苏州大学计算机科学与技术学院,江苏苏州 215006
  • 折叠

摘要

抽象语义表示AMR是将给定文本的语义特征抽象成一个单根的有向无环图.由于缺乏非英文语言的AMR数据集,跨语言AMR解析通常指给定非英文目标语言文本,构建其英文翻译对应的AMR图.目前跨语言AMR解析的相关工作均基于大规模英文-目标语言平行语料或高性能英文-目标语言翻译模型,通过构建(英文,目标语言和AMR)三元平行语料进行目标语言的AMR解析.与该假设不同的是,本文探索在仅具备大规模单语英文和单语目标语言语料的情况下,实现跨语言AMR解析.为此,提出基于无监督预训练的跨语言AMR解析方法.具体地,在预训练过程中,融合无监督神经机器翻译任务、英文和目标语言AMR解析任务;在微调过程中,使用基于英文AMR 2.0转换的 目标语言AMR数据集进行单任务微调.基于AMR 2.0和多语言AMR测试集的实验结果表明,所提方法在德文、西班牙文和意大利文上分别获得了 67.89%,68.04%和67.99%的Smatch F1值.

Abstract

AMR(Abstract Meaning Representation)abstracts the semantic features of a given text into a single-root directed acyclic graph.Due to the lack of non-English language AMR datasets,cross-lingual AMR parsing aims to parse non-English text into the corresponding AMR graph of its English translation.Current cross-lingual AMR parsing methods rely on large-scale English-target language par-allel corpora or high-performance English-target language translation models to build(English,target language,AMR)triplet parallel corpora for target language AMR parsing.In contrast to this assump-tion,this paper explores the possibility of achieving cross-lingual AMR parsing with only large-scale monolingual English and target language corpora.To this end,we propose cross-lingual AMR parsing based on unsupervised pretraining.Specifically,during pretraining,we integrate unsupervised neural machine translation tasks,English AMR parsing tasks,and target language AMR parsing tasks.During fine-tuning,we use an English AMR2.0-based target language AMR dataset for single-task fine-tuning.Experimental results on AMR2.0 and a multilingual AMR test set show that our method achieves Smatch F1 scores of 67.89,68.04,and 67.99 in German,Spanish,and Italian,respectively.

关键词

跨语言AMR语义解析/序列到序列模型/预训练模型

Key words

cross-lingual AMR parsing/seq2seq model/pre-trained model

引用本文复制引用

出版年

2024
计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
参考文献量31
段落导航相关论文