首页|基于动态定位和特征融合的多分支细粒度识别方法

基于动态定位和特征融合的多分支细粒度识别方法

扫码查看
为了解决细粒度分类类间差异小、类内差异大的分类难点,在Swin Transformer基础上,提出了一种改进的端到端的细粒度分类模型(TBformer)。针对复杂背景对网络识别产生的干扰,使用ECA、Resnet50、SCDA相结合的动态定位模块(DLModule)捕获关键物体,并设计了基于DLModule的三分支特征提取模块,提高对目标判别性特征的提取能力。为了充分挖掘三分支特征蕴含的丰富细粒度信息,提出了基于ECA的特征融合方法,增强特征的全面性、精确性,提高网络对细粒度分类的鲁棒性。实验结果表明:相比基础方法,TBformer在CUB-200-2011上的准确率提升了3。19%,在Stanford Dogs上的准确率提升了3。47%,在NABirds上的准确率提升了1。09%。
A multi-branch fine-grained recognition method based on dynamic localization and feature fusion
To solve the classification difficulties of small inter-class differences and large intra-class differences in fine-grained classification,an improved end-to-end fine-grained classification model(TB-former)is proposed based on Swin Transformer.In view of the interference of complex background on network recognition,the dynamic location module(DLModule)combining ECA,Resnet50 and SCDA is used to capture key objects,and a three-branch feature extraction module based on DLModule is de-signed to improve the ability of target discriminant feature extraction.In order to fully tap the rich fine-grained information contained in the three-branch features,a feature fusion method based on ECA is proposed to enhance the comprehensiveness and accuracy of the features,and improve the robustness of the network for fine-grained classification.The experimental results show that compared with the basic method,the accuracy of TBformer is improved by 3.19%in CUB-200-2011,3.47%in Stanford Dogs and 1.09%in NABirds.

fine grained recognitionfeature fusionattention mechanismmultiple branches

杨晓强、黄加诚

展开 >

西安科技大学计算机科学与技术学院,陕西 西安 710000

细粒度识别 特征融合 注意力机制 多分支

国家自然科学基金

62002285

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(2)
  • 2