首页|基于早期时间序列分类的可解释实时机动识别算法

基于早期时间序列分类的可解释实时机动识别算法

扫码查看
战斗机机动识别是判断战斗机战术意图的基础,然而现有的机动识别方法实时性不强且不具有可解释性,无法满足空战中对实时性的要求且不利于人机互信。设计基于早期时间序列分类的实时机动识别算法,将完整机动切分为机动单元,使用集成学习算法对机动单元进行识别并实时监控,以满足实时性要求并获得高识别精度。算法使用可解释模型,通过特征贡献度进行模型解释,使模型更透明从而降低空战决策者的决策风险。选择盘旋、斤斗等9种不同机动动作进行仿真实验,结果表明:在完整机动动作执行到20%时,所提算法即可识别其机动类别,识别准确率可达93%。
An interpretable real-time maneuver identification algorithm based on early time series classification
The maneuver identification of fighter aircraft is the basis for judging their tactical inten-tions,but the existing maneuver identification methods have weak real-time performance and lack inter-pretability,which cannot meet the real-time requirements in air combat and are not conducive to human-machine trust.This paper designs a real-time maneuver identification algorithm based on early time-series classification,which divides the complete maneuver into maneuver units and uses ensemble learn-ing algorithm to recognize and monitor the maneuver units in real-time,in order to achieve real-time re-quirements and obtain high recognition accuracy.The algorithm uses interpretable models and explains the model through feature contribution,making the model more transparent and reducing the decision risk for air combat decision-makers.Nine different maneuvers,such as hovering and jackknifing,are se-lected for simulation experiments,which proves that the algorithm can complete the identification with only the first 20%of the sample data of the time series observed,and the identification accuracy can reach 93%.

early time series classificationmaneuver identificationinterpretableensemble learning

庞诺言、关东海、袁伟伟

展开 >

南京航空航天大学计算机科学与技术学院,江苏 南京 211106

早期时间序列分类 机动识别 可解释 集成学习

航空基金

ASFC-20200055052005

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(2)
  • 10