计算机工程与科学2024,Vol.46Issue(2) :374-380.DOI:10.3969/j.issn.1007-130X.2024.02.019

一阶逻辑中基于treelet图神经网络的前提选择

Treelet-based graph neural network for premise selection in first-order logic

马雪 何星星 兰咏琪 李莹芳
计算机工程与科学2024,Vol.46Issue(2) :374-380.DOI:10.3969/j.issn.1007-130X.2024.02.019

一阶逻辑中基于treelet图神经网络的前提选择

Treelet-based graph neural network for premise selection in first-order logic

马雪 1何星星 1兰咏琪 1李莹芳2
扫码查看

作者信息

  • 1. 西南交通大学数学学院,四川 成都 611756
  • 2. 西南财经大学计算机与人工智能学院,四川 成都 611130
  • 折叠

摘要

前提选择是解决自动定理证明器面对大规模问题时性能降低的有效方法.当前面向一阶逻辑中前提选择的主流图神经网络忽略了逻辑公式图内部的节点顺序信息.针对此问题,将一种面向高阶逻辑公式的保序方法拓展到一阶逻辑中,并提出了一种基于treelet的图神经网络模型.该模型在信息聚合时一部分聚合中心节点的父、子节点信息,另一部分聚合节点顺序信息.实验分析表明:基于treelet的图神经网络模型在前提选择任务中比最优的主流图神经网络模型的分类准确率提高了约2%.

Abstract

Premise selection is an efficient method to address the performance degradation of automa-ted theorem provers when facing large-scale problems.Currently,the mainstream graph neural net-works for premise selection in first-order logic ignore the node order information inside logic formula graphs.To solve the above problem,an order-preserving method for higher-order logical formulas is ex-tended to first-order logic,and a treelet-based graph neural network model is proposed.The model ag-gregates the information of neighbor nodes in two parts:One part aggregates parent and child node in-formation of the central node,the other part aggregates the order information of the central node.Ex-perimental analysis shows that,compared with the optimal mainstream graph neural network model,the treelet-based graph neural network model improves the classification accuracy by about 2%in the premise selection task.

关键词

一阶逻辑公式/图神经网络/前提选择/二元分类

Key words

first-order logical formula/graph neural network/premise selection/binary classification

引用本文复制引用

基金项目

国家自然科学基金(62106206)

中央高校基本科研业务费专项资金(2682020ZT107)

教育部人文社科项目(19YJCZH048)

教育部人文社科项目(20XJCZH016)

四川省科技计划(2023YFH0066)

出版年

2024
计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
参考文献量1
段落导航相关论文