首页|可满足性模理论综述

可满足性模理论综述

扫码查看
可满足性模理论(SMT)是指判定一阶逻辑公式在特定背景理论下的可满足性问题。基于一阶逻辑的SMT相比SAT描述能力更强、抽象能力更高,能处理更加复杂的问题。SMT求解器在各个领域都有应用,已经成为重要的形式化验证引擎。目前,SMT已被广泛应用在人工智能、硬件RTL验证、自动化推理和软件工程等领域。根据近些年SMT的发展,首先阐述SMT基本知识和常见的背景理论;然后分析总结Eager方法、Lazy方法和DPLL(T)方法的实现流程,并进一步介绍主流求解器Z3、CVC5和MathSAT5的实现过程;接着介绍SMT的扩展问题#SMT、SMT应用在深度神经网络的SMTlayer方法和量子SMT求解器;最后对SMT的发展进行展望,并讨论其面临的挑战。
A survey of satisfiability modulo theories
Satisfiability modulo theories(SMT)refers to the decidability problem of first-order logic formulas under specific background theories.SMT based on first-order logic have a stronger expressive capability compared to SAT,with higher abstraction ability to handle more complex issues.SMT solv-ers find applications in various domains and have become essential engines for formal verification.Cur-rently,SMT is widely used in fields such as artificial intelligence,hardware RTL verification,automa-ted reasoning,and software engineering.Based on recent developments in SMT,this paper first ex-pounds on the fundamental knowledge of SMT and lists common background theories.It then analyzes and summarizes the implementation processes of Eager,Lazy,and DPLL(T)methods,providing fur-ther insights into the implementation processes of mainstream solvers Z3,CVC5,and MathSAT5.Sub-sequently,the paper introduces extension problems of the SMT as#SMT,the SMTlayer approach ap-plied to deep neural networks(DNNs),and quantum SMT solvers.Finally,the paper offers a per spec-tive on the development of SMT and discusses the challenges they face.

first-order logicsatisfiability modulo theories(SMT)Lazy methodDPLL(T)SMT solver#SMT

唐傲、王晓峰、何飞

展开 >

北方民族大学计算机科学与工程学院,宁夏 银川 750021

北方民族大学图像图形智能处理国家民委重点实验室,宁夏 银川 750021

一阶逻辑 可满足性模理论 Lazy方法 DPLL(T) SMT求解器 #SMT

国家自然科学基金宁夏青年拔尖人才项目(2021)

62062001

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(3)
  • 82