首页|基于胶囊网络的异常多分类模型

基于胶囊网络的异常多分类模型

扫码查看
国网公司日益庞大的服务器集群产生的大量生产运行数据,以及实时分析各类设备、系统产生的海量监控数据成为电力IT运维工作的新挑战。异常检测技术作为智能电网信息运维工作的关键技术,可以有效检测运维故障并及时告警,避免损坏敏感设备。目前一些传统异常检测方法检测的异常种类少且精度低,导致故障发现不及时。为了应对这一挑战,提出了基于胶囊网络的多维时间序列异常多分类模型NNCapsNet。首先,应用无监督算法结合专家知识对电网营销业务应用服务器性能监控数据进行预处理和标注。其次,引入胶囊网络进行分类和异常检测。五折交叉验证的实验结果表明,NNCapsNet在包含15类异常的数据集上实现了91。21%的平均分类准确度。还在包含2万条监控数据的数据集上与4个基准模型进行了对比,NNCapsNet在关键评估指标上均取得了较好的结果。
An anomaly multi-classification model based on capsule network
The increasingly large server clusters of state grid corporation generate a large amount of production operation data,and real-time analysis of the massive monitoring data generated by various devices and systems has become a new challenge in power IT operation and maintenance work.As a key technology of intelligent grid information operation and maintenance work,anomaly detection technolo-gy can effectively detect operation and maintenance faults and provide timely alarms to avoid damage to sensitive equipment.Currently,some traditional anomaly detection methods have few types of anoma-lies and low precision,resulting in delayed fault detection.To address this challenge,this article propo-ses a multi-dimensional time series anomaly detection method based on capsule networks,NNCapsNet.Firstly,the unsupervised algorithm is applied in combination with expert knowledge to preprocess and label the performance monitoring data of grid marketing business application servers.Secondly,the cap-sule network is introduced for classification and anomaly detection.Experimental results obtained through five-fold cross-validation show that NNCapsNet achieves an average classification accuracy of 91.21%on a dataset containing 15 types of anomalies.At the same time,compared with four bench-mark models on the dataset containing 20 000 monitoring data,NNCapsNet achieves good results in key evaluation indicators.

monitoring datapower IT operation and maintenanceabnormal detectioncapsule net-workmulti-dimensional time series analysisunsupervised algorithm

阳予晋、王堃、陈志刚、徐悦、李斌

展开 >

中南大学计算机学院,湖南 长沙 410083

国网宁夏电力有限公司信息通信公司,宁夏 银川 753000

监测数据 电力IT运维 异常检测 胶囊网络 多维时间序列分析 无监督算法

&&国家自然科学基金新一代人工智能重大项目

5229XT20003T716330062020AAA009605

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(3)
  • 31