首页|结合决策树和AdaBoost的缓存侧信道攻击检测

结合决策树和AdaBoost的缓存侧信道攻击检测

扫码查看
缓存侧信道攻击严重威胁各类系统的安全,对攻击进行检测可以有效阻断攻击.为此,提出了一种基于决策树和AdaBoost的AD检测模型,通过匹配系统硬件事件信息特征,快速有效地识别缓存侧信道攻击.首先,分析缓存侧信道攻击特点,提取攻击硬件事件特征模式.其次,利用决策树的快速响应能力,同时结合AdaBoost对数据样本进行加权迭代,对采集的不同负载下的特征数据进行模型训练,优化检测模型在不同负载时的整体检测精度.实验结果表明,该模型在不同系统负载条件下的检测精度均不低于98.8%,能够快速准确地检测出缓存侧信道攻击.
Cache side-channel attack detection combining decision tree and AdaBoost
Cache side-channel attacks pose a serious threat to the security of various systems,and de-tecting the attacks can effectively block the attacks.Therefore,an AD detection model based on decision tree and AdaBoost is proposed to quickly and effectively identify cache side-channel attacks by matching system hardware event information features.Firstly,the characteristics of cache side-channel attacks are analyzed,and attack hardware event feature patterns are extracted.Secondly,the decision tree's rapid response capability is utilized,combined with AdaBoost's weighted iterative learning of data samples,to train the model on different load conditions.The model is optimized to improve the overall detection ac-curacy under different loads.Experimental results show that the detection accuracy of this model under different system load conditions is not less than 98.8%,and it can quickly and accurately detect cache side-channel attacks.

system securitycache side-channel attackmachine learningdetection method

李扬、尹大鹏、马自强、姚梓豪、魏良根

展开 >

宁夏大学信息工程学院,宁夏 银川 750021

宁夏大数据与人工智能省部共建协同创新中心,宁夏 银川 750021

系统安全 缓存侧信道攻击 机器学习 检测方法

宁夏回族自治区重点研发计划宁夏回族自治区重点研发计划宁夏自然科学基金

2021BEB040472022BDE030082021AAC030781

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(3)
  • 41