首页|基于用户权威度和多特征融合的微博谣言检测模型

基于用户权威度和多特征融合的微博谣言检测模型

扫码查看
网络谣言的广泛传播及其对社会的负面影响急切需要高效的谣言检测模型。由于数据集的文本缺乏语义信息和严格的句法结构,结合用户特征和语境特征来丰富语义信息显得很有意义。对此,提出一种基于用户权威度和多特征融合的微博谣言检测模型MRUAMF。首先,抽取出用户信息完整度、用户活跃度、用户交际广度和用户平台认证指数 4 项指标构建用户权威度定量计算模型,通过级联用户权威度及其构成指标,并使用 2 层全连接网络融合特征,有效量化用户特征。其次,考虑到语境对谣言理解的有效性,提取相关语境特征。最后,使用BERT预训练模型提取文本特征,并结合多模态适应门 MAG 融合用户特征、语境特征与文本特征。在微博数据集上进行的实验表明,相比基线模型,MRUAMF 模型的检测性能更优,准确率达 0。941。
A microblog rumor detection model based on user authority and multi-feature fusion
The widespread dissemination of online rumors and their negative impact on society ur-gently require efficient rumor detection.Due to the lack of semantic information and strict syntactic structure in the text of the dataset,it is meaningful to combine user characteristics and contextual fea-tures to enrich semantic information.In this regard,MRUAMF is proposed.Firstly,four indicators in-cluding user information completeness,user activity,user communication span,and user platform au-thentication index are extracted to construct a quantitative calculation model for user authority.By cas-cading user authority and its constituent indicators,and using a two-layer fully connected network to fuse features,user characteristics are effectively quantified.Secondly,considering the effectiveness of context in understanding rumors,relevant contextual features are extracted.Finally,the BERT pre-training model is used to extract text features,which are then combined with the Multimodal Adaptation Gate(MAG)to fuse user features,contextual features,and text features.Experiments on the microb-log dataset show that compared with the baseline model,the MRUAMF model has better detection per-formance with an accuracy rate of 0.941.

rumor detectionbidirectional encoder representations from transformers(BERT)multi-modal adaption gate(MAG)user authorityanalytic hierarchy process

许莉芬、曹霑懋、郑明杰、肖博健

展开 >

华南师范大学计算机学院,广东 广州 510631

华南师范大学人工智能学院,广东 佛山 528200

谣言检测 BERT MAG 用户权威度 层次分析法

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(4)
  • 26