首页|基于异常保持的弱监督学习网络入侵检测模型

基于异常保持的弱监督学习网络入侵检测模型

扫码查看
网络入侵检测系统对维护网络安全至关重要,目前针对只有较少异常标记网络数据的入侵检测场景的研究较少。基于数据的异常保持性,设计了基于异常保持的弱监督学习网络入侵检测模型WIDS-APL,该检测模型包含数据转换层、表征学习层、转换分类层和异常判别层 4 部分,利用一组可学习的编码器将样本映射到不同区域并压缩到超球体,利用异常样本的标签信息学习正常样本和异常样本的分类界限,得到样本的异常分数。在 4 个数据集上的测试结果表明了该模型的有效性和鲁棒性,相比 4 个主流算法,在 AUC-ROC值上分别提升了 4。80%,5。96%,1。58%和 1。73%,在AUC-PR 性能上分别提升了 15。03%,2。95%,4。71%和 9。23%。
Weakly-supervised IDS with abnormal-preserving transformation learning
Network intrusion detection systems are crucial for maintaining network security,and there is currently limited research on intrusion detection scenarios with only a few abnormal markers of network data.This paper designs a weakly-supervised learning intrusion detection model,called WIDS-APL,based on the anomaly retention of data.The detection model consists of four parts:data transfor-mation layer,representation learning layer,transformation classification layer,and anomaly discrimina-tion layer.By using a set of learnable encoders to map samples to different regions and compress them into a hypersphere,the label information of abnormal samples is used to learn the classification bounda-ries of normal and abnormal samples,and the abnormal score of the samples is obtained.Testing the WIDS-APL system on four datasets demonstrates the effectiveness and robustness of the system,with improvements in the AUC-ROC values of 4.80%,5.96%,1.58%,and 1.73%respectively compared to other mainstream methods.Furthermore,there are enhancements of 15.03%,2.95%,4.71%,and 9.23%in AUC-PR performance.

network intrusion detectionweakly-supervised learningdeep learning

谭郁松、王伟、蹇松雷、易超雄

展开 >

国防科技大学计算机学院,湖南 长沙 410073

网络入侵检测 弱监督学习 深度学习

国家自然科学基金

U19A2060

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(5)
  • 21