首页|基于双层注意力和深度自编码器的时间序列异常检测模型

基于双层注意力和深度自编码器的时间序列异常检测模型

扫码查看
目前时间序列通常具有弱周期性以及高度复杂的相关性特征,传统的时间序列异常检测方法难以检测此类异常。针对这一问题,提出了一种新的无监督时间序列异常检测模型(DA-CBG-AE)。首先,使用新型滑动窗口方法,针对时间序列周期性设置滑动窗口大小;其次,采用卷积神经网络提取时间序列高维度空间特征;然后,提出具有堆叠式Dropout双向门循环单元网络作为自编码器的基本结构,从而捕捉时间序列的相关性特征;最后,引入双层注意力机制,进一步提取特征,选择更加关键的时间序列,从而提高异常检测准确率。为了验证该模型的有效性,将DA-CBG-AE 与 6 种基准模型在 8 个数据集上进行比较。最终的实验结果表明,DA-CBG-AE 获得了最优的F1 值(0。863),并且其检测性能相比最新的基准模型Tad-GAN高出 25。25%。
An anomaly detection model of time series based on dual attention and deep autoencoder
Currently,time series data often exhibit weak periodicity and highly complex correlation features,making it challenging for traditional time series anomaly detection methods to detect such a-nomalies.To address this issue,a novel unsupervised time series anomaly detection model(DA-CBG-AE)is proposed.Firstly,a novel sliding window approach is used to set the window size for time series periodicity.Secondly,convolutional neural networks are employed to extract high-dimensional spatial features from the time series.Then,a bidirectional gated recurrent unit network with stacked Dropout is proposed as the basic architecture of the autoencoder to capture the correlation features of the time se-ries.Finally,a dual-layer attention mechanism is introduced to further extract features and select more critical time series,thereby improving the accuracy of anomaly detection.To validate the effectiveness of the model,DA-CBG-AE is compared with six benchmark models on eight datasets.The experimental results show that DA-CBG-AE achieves the optimal F1 value(0.863)and outperforms the latest bench-mark model Tad-GAN by 25.25%in terms of detection performance.

anomaly detectiondual-layer attention mechanismautoencoderconvolutional neural networksbidirectional-gated recurrent unit

尹春勇、赵峰

展开 >

南京信息工程大学计算机学院、网络空间安全学院,江苏 南京 210044

异常检测 双层注意力机制 自编码器 卷积神经网络 双向门循环单元

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(5)
  • 39