首页|ELPVO:基于I/O流水优化的超低功耗视觉里程计

ELPVO:基于I/O流水优化的超低功耗视觉里程计

扫码查看
视觉里程计赋予了机器人自主定位与构建环境地图的能力,被广泛应用在各类无人设备上。视觉里程计涉及大量的图像处理计算,但其部署平台多数仅具备极为有限的计算资源,限制了其使用范围。针对现有低功耗视觉里程计存在的I/O 瓶颈,提出一种面向STM32F7 嵌入式平台的基于RGB-D相机的高速低功耗视觉里程计ELPVO。ELPVO 充分考虑 STM32F7 平台的硬件资源,通过 DMA 传输提高处理器使用效率,进而在算法精度没有变化的情况下提升处理速度。在搭载 216 MHz ARM Cortex®-M7 处理器的STM32F767 嵌入式平台上,以TUM RGB-D数据集作为测试基准,ELPVO 对 320×240 分辨率的图像处理速度可以达到 26 fps,整体运行速度提升了 84%,运行功耗维持在 0。7 W。
ELPVO:A ultra-low power visual odometry based on I/O optimization
Visual odometry endows robots with the ability of autonomous positioning and building environmental maps,and is widely used in various unmanned devices.Visual odometry involves a large amount of image processing and calculation,but most of its deployment platforms only have extremely limited computational resources,limiting its application scope.In response to the I/O bottleneck of ex-isting low-power visual odometry,this paper proposes a high-speed low-power visual odometry,named ELPVO,based on RGB-D cameras for the STM32F7 embedded platform.ELPVO fully considers the hardware resources of the STM32F7 platform,improves the processor utilization efficiency through DMA transmission,and further enhances the processing speed without changing the algorithm accuracy.On the STM32F767 embedded platform equipped with a 216 MHz ARM Cortex®-M7 processor,with the TUM RGB-D dataset as the testing benchmark,ELPVO can achieve a processing speed of 26 frames per second for images with a resolution of 320×240,with an overall run speed improved by 84%and a run power consumption maintained at 0.7 watts.

visual odometrylow power consumptionRGB-D camera

赵千贺、王锐

展开 >

北京航空航天大学计算机学院,北京 100191

上海人工智能实验室,上海 200232

视觉里程计 低功耗 RGB-D相机

科技创新2030-"新一代人工智能"重大项目

2022ZD0161902

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(5)
  • 18