首页|基于邻域关系感知图神经网络的DDI预测

基于邻域关系感知图神经网络的DDI预测

扫码查看
研究药物的相互作用DDI有助于临床用药与新药研发.现有的研究技术没有充分考虑药物知识图谱中药物实体与其他药物、靶标和基因等实体的拓扑结构,以及实体之间不同关系的语义重要性.针对这些问题,提出基于邻域关系感知的图神经网络模型NRAGNN预测药物的相互作用.首先,使用图注意力学习不同关系边的权重与特征表示,强化药物实体的语义特征;然后,生成药物实体周围不同层的邻域表示,捕获药物实体的拓扑结构特征;最后,将2种药物特征表示向量进行逐元素相乘得到药物相互作用分数.实验预测结果表明,提出的NRAGNN模型在KEGG药物数据集上的ACC、AUPR、AUC-ROC和F1指标分别达到了0.899 4,0.944 4,0.956 7 和 0.902 3,优于当前的其他模型.
Drug-drug interaction prediction based on neighborhood relation-aware graph neural network
Research on drug-drug interaction(DDI)is conducive to clinical medication and new drug development.Existing research technologies do not fully consider the topological structure of drug enti-ties and other entities such as drugs,targets,and genes in the drug knowledge graph,as well as the se-mantic importance of different relationships between entities.To solve these problems,this paper pro-poses a model based on neighborhood relation-aware graph neural network(NRAGNN)to predict DDI.Firstly,the graph attention network is utilized to learn the weights and feature representations of diffe-rent relationship edges,which enhances the semantic features of drug entities.Secondly,neighborhood representations for different layers around the drug entity are generated to capture the topological struc-ture features of drug entities.Finally,the drug-drug interaction score is obtained by element-wise multi-plication of the two drug feature representation vectors.Experimental results show that the proposed NRAGNN model achieves 0.899 4,0.944 4,0.956 7,and 0.902 3 in ACC,AUPR,AUC-ROC,and F1 indicators on the KEGG-DRUG dataset,respectively,outperforming other current models.

drug-drug interactionknowledge graphneighborhood relation-awaregraph attention networksemantic feature

雷志超、蒋嘉俊、马驰卓、周文静、王楚正

展开 >

中南林业科技大学计算机与数学学院,湖南 长沙 410004

药物相互作用 知识图谱 邻域关系感知 图注意力网络 语义特征

国家自然科学基金

61602528

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(5)
  • 41