首页|基于实体知识的远程监督关系抽取

基于实体知识的远程监督关系抽取

扫码查看
为了降低远程监督关系抽取标记数据的噪声,提出一种融合实体描述和自注意力机制的远程监督关系提取模型,模型基于多示例学习,考虑到实体知识和位置关系的综合作用,采用词、实体、实体描述和相对位置的拼接向量作为模型输入,将分段卷积神经网络作为句子编码器,结合改进的结构化自注意力机制,捕捉特征内部相关性,并构造头实体和尾实体的差向量作为注意力机制的监督信息,为句子分配权重。在纽约时报数据集上的实验结果表明,与已有模型相比,本文模型的性能指标均达到最大值。
Distantly supervised relation extraction based on entity knowledge
To reduce the noise of labeled data in the distantly supervised relationship extraction,a distant supervision relationship extraction model integrating entity description and self-attention mecha-nism is proposed.Based on multi-instance learning,the comprehensive impacts of entity knowledge and position relation are considered,and the splicing vector of word,entity,entity description and relative position are adopted as the model input.A piecewise convolutional neural network is employed as the sentence encoder,which combines with the improved structured self-attention mechanism to capture the internal correlation of features.The difference vector between tail entity and head entity is constructed as the supervision information of attention mechanism to assign weight to each sentence.Experimental results on New York Times dataset show that the model performance indexes of the model reach the maximum values when compared to state-of-the-art models.

relation extractionentityentity descriptionpiecewise convolutional neural networkself-attention mechanism

马长林、孙状

展开 >

华中师范大学计算机学院,湖北 武汉 430079

关系抽取 实体 实体描述 分段卷积神经网络 自注意力机制

国家自然科学基金

62272189

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(5)
  • 19