首页|改进Faster R-CNN的遥感图像小目标检测算法

改进Faster R-CNN的遥感图像小目标检测算法

扫码查看
遥感图像目标检测是目标检测领域的一个关键问题,目前利用深度学习检测目标的算法大多在单向特征融合过程中添加注意力机制,一视同仁地去增强各类型的目标,并不能突出小目标。为了取得更好的检测效果,通过引入非对称高低层调制机制,构造兼顾低层细节信息和高层语义信息的特征图,以达到增强小目标特征检测的目的;同时使用DIoU损失函数代替原算法SmoothL1损失函数以提升算法检测精度与收敛速度;并且在感兴趣区域分类任务中引入灵活上下文信息以提高小目标分类准确性。实验结果表明,该算法在DIOR和NWPU VHR-10数据集上均取得了良好的表现。
A small object detection algorithm of remote sensing image based on improved Faster R-CNN
Object detection in remote sensing images is a critical issue in the field of object detection.Currently,most object detection models that using deep learning add attention mechanism during the u-nidirectional feature fusion process,enhancing various types of objects indiscriminately and failing to highlight small objects.In order to achieve better detection results,an asymmetric high and low-level modulation mechanism is introduced,constructing feature maps that consider shallow detail information and advanced semantic information with the aim of enhancing the characteristics of small objects.Addi-tionally,the DIoU loss function is used instead of the original SmoothL1 loss function to improve model detection accuracy and convergence speed.Furthermore,flexible context information is introduced into in the region of interest classification task to improve the accuracy of small objects classification.Experi-ments demonstrate that the proposed method achieves good performance on DIOR and NWPU VHR-10 datasets.

deep learningsmall object detectionremote sensing imageasymmetric high-low layer modulationcontext information

胡昭华、王长富

展开 >

南京信息工程大学电子与信息工程学院,江苏 南京 210044

南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏 南京 210044

深度学习 小目标检测 遥感图像 非对称高低层调制 上下文信息

国家自然科学基金

61601230

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(6)