首页|改进YOLOv7网络在低空遥感图像目标检测中的应用

改进YOLOv7网络在低空遥感图像目标检测中的应用

扫码查看
针对低空遥感图像目标检测存在的尺度微小、背景复杂多变和计算资源有限等问题,提出了一种改进YOLOv7网络的低空遥感图像目标检测网络SimAM_YOLOv7.首先,基于张量火车分解,最小化冗余参数;其次,引入无参数的注意力机制,提高网络对目标的聚焦能力;最后,利用高效IoU(EIoU)优化定位损失,减小目标框与先验框的位置偏移,基于Focal Loss改进分类损失,解决正负样本的失衡问题.在真实低空遥感数据集上进行实验,在YOLOv7的基准下,所提出的网络在参数量减少3.27M时,mAP50 指标提高了4.63%,mAP50:95 指标提高了3.94%,充分验证了所提网络的有效性和优越性.
Low-altitude remote sensing image object detection based on improved YOLOv7 network
To address the bottlenecks caused by issues such as small scales,complex and variable backgrounds,and limited computing resources in low-altitude remote sensing image object detection,a new low-altitude remote sensing image object detection method,named SimAM_YOLOv7,is proposed,based on improved YOLOv7 network.Firstly,based on tensor train decomposition,redundant parame-ters are minimized.Secondly,a non-parametric attention module is introduced to enhance the network's ability to focus on targets.Then,an efficient intersection over union(EIoU)is utilized to optimize the positioning loss,reducing the positional offset between the target box and the prior box.Furthermore,the classification loss is improved based on Focal Loss to overcome the imbalance between positive and negative samples.Experiments conducted on a real-world low-altitude remote sensing dataset demon-strate that,compared to the YOLOv7 baseline,the proposed method increases mAP50 by 4.63%and in-creases mAP50:95 by 3.94%while the number of parameters is reduced by 3.27M,fully validating its ef-fectiveness and superiority.

tensor decompositionattention mechanismloss function improvementsmall object de-tection

张永智、何可人、戈珏

展开 >

常州大学信息化建设与管理中心,江苏 常州 213164

张量分解 注意力机制 损失函数优化 小目标检测

江苏省现代教育技术研究2021年度智慧校园专项

2021-R-96782

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(7)
  • 1