首页|基于多尺度特征与互监督的拥挤行人检测

基于多尺度特征与互监督的拥挤行人检测

扫码查看
针对拥挤场景中,行人漏检率高、准确率低的问题,提出一种基于多尺度特征与互监督的拥挤行人检测网络.为了有效提取复杂场景中的行人特征信息,用PANet金字塔网络与混合空洞卷积相结合的网络提取特征信息.然后,设计了一种行人头部-全身互监督检测网络分别进行头部和全身检测,利用头部预测框和全身预测框的互监督获得更加准确的行人检测结果.所提出的网络在数据集CrowdHu-man上取得了13.5%的MR-2 性能,相较于YOLOv5网络提升了3.6%,同时AP提升了3.5%;在CityPersons数据集上取得了48.2%的MR-2 性能,相较于YOLOv5网络提升了2.3%,同时AP提升了2.8%.实验结果表明,提出的网络在人群拥挤的密集场景中具有良好的检测效果.
Pedestrian detection based on multi-scale features and mutual supervision
Aiming at the high false negative rate and low accuracy in crowded scenes,a pedestrian de-tection network based on multi-scale features and mutual supervision is proposed.To effectively extract pedestrian feature information in complex scenes,a network combining PANet pyramid network and mixed dilated convolutions is used to extract feature information.Then,a mutual supervision detection network for head-body detection is designed,which utilizes the mutual supervision of head bounding bo-xes and full-body bounding boxes to obtain more accurate pedestrian detection results.The proposed network achieves 13.5%MR-2 performance on CrowdHuman dataset,with an improvement of 3.6%compared to the YOLOv5 network,and a simultaneous improvement of 3.5%in average precision(AP).On CityPersons dataset,it achieves 48.2%MR-2 performance,with 2.3%improvement com-pared to the YOLOv5 network,and a simultaneous improvement of 2.8%in AP.The results indicate that the proposed network demonstrates good detection performance in densely crowded scenes.

crowded scenepedestrian detectionmulti-scale networkmutual supervision

肖振久、李思琦、曲海成

展开 >

辽宁工程技术大学软件学院,辽宁 葫芦岛 125105

拥挤场景 行人检测 多尺度网络 互监督

辽宁省高等学校基本科研项目辽宁工程技术大学学科创新团队

LJKMZ20220699LNTU20TD-23

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(7)
  • 6