首页|基于图文关联与上下文引导的军事新闻图集描述生成方法

基于图文关联与上下文引导的军事新闻图集描述生成方法

扫码查看
传统的图像描述生成方法由于缺少现实世界的先验知识,生成的描述文本不具有解释性,同时在某些专业领域生成的描述文本准确性不高.针对上述问题,提出了军事新闻图集描述生成任务,还构建了军事新闻图集数据集.该任务存在2个关键挑战:描述信息来源于整个图集和对应的新闻文本中,模型学习到的语义不够充分.进一步提出了一种基于图文关联与上下文引导的军事新闻图集描述生成方法ITRCG.基于ITRCG实现跨模态信息交互,引导模型学习更完整的语义,并通过标签清理辅助命名实体生成.在构建的军事新闻图集数据集上进行了验证实验,结果表明ITRCG能够有效提高描述文本的质量,在各项评价指标上均取得了提升.
A military image set captioning method based on image and text relevance and context guidance
Traditional image captioning methods do not generate explanatory description texts due to the lack of a priori knowledge of the real world,while the accuracy of the generated description texts is not high in some specialized fields.To address these problems,the military news image set captioning task is proposed,and a military news image set dataset is also constructed.The task has two key chal-lenges:the description information is derived from the whole image set and the corresponding news arti-cles;the semantics learned by the model is not sufficient.A military news image set captioning method based on image and text relevance and context guidance(ITRCG)is further proposed.Based on ITRCG,cross-modal information interaction is realized,the model is guided to learn more complete se-mantics,and named entity generation is assisted by label cleaning.Experimental validation is conducted on the constructed military news image set dataset,and the results show that ITRCG can effectively im-prove the quality of the description text and achieve improvements in all evaluation metrics.

image captioningimage and text relevance attentioncontext guidance attentionimage setnews text

梅运红、刘茂福

展开 >

武汉科技大学计算机科学与技术学院,湖北武汉 430065

湖北省智能信息处理与实时工业系统重点实验室,湖北武汉 430065

图像描述 图文关联注意力 上下文引导注意力 图集 新闻文本

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(9)