首页|一种基于超图的多模态多标签分类方法

一种基于超图的多模态多标签分类方法

扫码查看
标签分类旨在从若干标签中选取最相关的标签子集来标注一个实例,现已成为人工智能领域的热点问题.传统的多标签学习方法主要针对单一模态数据进行识别,针对多模态数据之间的高阶关联挖掘研究较少.为解决多标签场景下多模态数据之间高阶关联表示不充分的问题,提出了一种基于超图的多模态多标签分类方法.引入超图模型对多模态数据的高阶关联进行建模,利用多模态特征融合和超边卷积操作,实现多模态数据关系挖掘和特征识别,提高了多模态多标签分类的性能.采用电影体裁分类任务进行实验,并与传统方法进行了比较.实验结果表明,所提出的方法在准确率、精度、F1值上优于对比方法,证明了该方法的有效性.
A multimodal multi-label classification method based on hypergraph
Label classification aims to select the most relevant subset of labels from a set of labels to tag an instance,which has become a hot issue in the field of artificial intelligence.Traditional multi-label learning methods mainly focus on identifying single-modal data,with limited research on mining high-order correlation between multi-modal data.To address the issue of insufficient representation of high-order correlations between multi-modal data in multi-label scenarios,this paper proposed a multi-modal multi-label classification method based on hypergraphs.The hypergraph model is introduced to model the high-order correlations of multi-modal data,and the fusion of multi-modal features and hyper-edge convolution operation are utilized to achieve the mining of multi-modal data relationships and fea-ture recognition,thus improving the performance of multi-modal multi-label classification.Experiments were conducted on the movie genre classification task,and the proposed method was compared with tra-ditional methods.The experimental results show that the proposed method outperforms the comparison methods in terms of accuracy,precision,and F1 score,demonstrating the effectiveness of the method.

multi-label learningdata correlationhypergraphmulti-modal

陆斌、范强、周晓磊、严浩、王芳潇

展开 >

南京信息工程大学软件学院,江苏南京 210044

国防科技大学第六十三研究所,江苏南京 210007

国防科技大学大数据与决策实验室,湖南长沙 410073

多标签学习 数据关联 超图 多模态

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(9)