首页|基于YOLOv8改进的打架斗殴行为识别算法:EFD-YOLO

基于YOLOv8改进的打架斗殴行为识别算法:EFD-YOLO

扫码查看
在当今社会,打架斗殴检测技术对于防范暴力事件和冲突至关重要.结合监控摄像头和目标检测,能够实时监测人群活动,从而有效预防潜在威胁.因此,提出了一种基于YOLOv8改进的打架斗殴行为识别算法EFD-YOLO.EFD-YOLO采用EfficientRep替换主干网络,提高了特征提取的效率,并在监控范围内实现准确实时的特征提取.引入FocalNeXt焦点模块,通过深度卷积和跳跃连接的结合,解决了遮挡问题和多尺度特征需求问题.采用Focal-DIoU作为边界框回归损失函数,在复杂情况下减少了误检的问题.实验结果显示,EFD-YOLO算法相较于YOLOv8n在mAP@0.5指标上提升了4.2%,在mAP@0.5∶0.95指标上提升了2.5%,满足关键场所中实时检测打架斗殴行为的需求.
An improved fighting behavior recognition algorithm based on YOLOv8:EFD-YOLO
In today's society,fighting behavior detection technology is crucial for preventing violent incidents and conflicts.By integrating surveillance cameras with object detection,real-time monitoring of crowd activities becomes possible,effectively preempting potential threats.Based on YOLOv8,EFD-YOLO employs EfficientRep to replace the backbone network,enhancing the efficiency of feature ex-traction and enabling accurate real-time feature extraction within the surveillance area.The introduction of the FocalNeXt focus module,through a combination of deep convolutions and skip connections,ad-dresses occlusion issues and multi-scale feature requirements.Furthermore,Focal-DIoU is adopted as the bounding box regression loss function,reducing false detections in complex scenarios.Experimental results show that the EFD-YOLO algorithm outperforms YOLOv8n by 4.2%in the mAP@0.5 metric and 2.5%in the mAP@0.5∶0.95 metric,making it suitable for real-time detection of fighting behaviors in critical locations.

object detectionfightingYOLOv8EfficientRepFocalNeXtFocal-DIoU

曹雨淇、徐慧英、朱信忠、黄晓、陈晨、周思瑜、盛轲

展开 >

浙江师范大学计算机科学与技术学院(人工智能学院),浙江金华 321004

浙江师范大学教育学院,浙江金华 321004

目标检测 打架斗殴 YOLOv8 EfficientRep FocalNeXt Focal-DIoU

国家自然科学基金国家自然科学基金浙江省自然科学基金重点项目国家级大学生创新创业训练计划项目创新训练重点项目

6237625261976196LZ22F030003202310345042

2024

计算机工程与科学
国防科学技术大学计算机学院

计算机工程与科学

CSTPCD北大核心
影响因子:0.787
ISSN:1007-130X
年,卷(期):2024.46(10)